
Inform 7

Programmer's
Manual

Ron Newcomb
August 15, 2011

build 6G60

pscion@yahoo.com

Contents
Inform 7: In a Nutshell............................2
The Firehose..6
Class And Prejudice...............................15
The Coding Imperative..........................18
Boolean Adjectives................................21
Patterned Procedures.............................23
Functions Decide on a Value.................25
Say Phrases.. 26
Types of Types....................................... 27
Sweet Relations.....................................30
Rules of Thumb.....................................33
Rulebooks: White-box Paradigm...........36
Events are Actions.................................39
Understanding Our Player, Our Parser. .45
Arrays Have Been Tabled......................48
Time for a Scene.................................... 51
Named Values Everywhere....................53
It's Not Just Text....................................55
Precisely One Spoon-unit Of Sugar.......57
Backstage Activities...............................60
Testing Commands................................67
Times, Turns, and Tenses.......................68
Swapping Headings...............................75
Facing Inform 6.....................................77

 The Inform 7 Programmer's Manual pg 1

Inform 7: In a Nutshell

Inform 7 is a domain-specific language intended for authoring interactive fiction in the vein of
Zork and Colossal Cave. Just as the videogame industry in general strives for better story in
its products, Inform 7 strives to appeal to creators who are not programmers, and certainly do
not have a collegiate background in computer programming with all of the vocabulary and
metaphors that that entails. In this way, Inform 7 shares aims with BASIC, COBOL, and
Applescript: a readable language for the intelligent layperson. But Inform takes readability
much further.

This chapter compares Inform with other programming languages to give the seasoned
programmer a sense of place. It can be skipped if so desired, though the rule breakdown at
the end may be useful to return to later.

Inform does not concern itself about optimizing compilation speed at the expense of syntax,
or ensuring scalability and security at the expense of complexity. Several design choices
seem unusual or even a bad idea at first blush, but they are based on several years' worth of
experience in creating interactive fiction. The first two of these choices will be much on your
mind while learning. The other two will eventually befriend you.

First: identifiers may have spaces. Avoiding the underscore-or-capitalize contention, in
Inform 7 one could name a variable "the currently owned car". Likewise for all other
constructs in the language, including functions: "mull over (idea - an object) in my (spot - a
room)". Extraordinarily readable code results when constructs are named appropriately:
objects and value-returning functions after noun phrases, actions and activities after participial
phrases, non-value-returning functions after imperative sentences, etc. Articles a, an, and the
are almost always ignored.

And second: rulebooks. Inform 7 is a rulebook-based language. A rulebook is a container for
rules, but these are not the production rules from Prolog. Rather, they are unnamed
imperative functions that self-invoke based on global variables, game-state, and most
importantly, on whether the containing rulebook is executing. From the outside, a rulebook
acts -- and is invoked -- like a function: give it a task and it will solve it. The difference is
how it solves it. It may execute every applicable rule within itself, or may only execute the
most specific applicable rule, your choice. The entirety of the Inform 7 system is a sequence
of rulebooks in a prescribed order, with the oft-ignored background ones calling the numerous
foreground rulebooks, and the foreground ones, initially empty, containing dozens of author-
written rules.

Third are adjectives, especially as used by set-descriptions. An adjective is a boolean, but
when combined with the class or construct to which they belong, they describe a set of
instantiations. Consider this common loop construct, keywords being in bold: "repeat with
antagonist running through unhappy resourceful people". The index variable will be
"antagonist". Person is a class, while unhappy and resourceful are boolean values for two
different properties or methods. The loop will set antagonist to each person in turn whose
adjectives are set in the indicated way. Inform recognizes plural words as synonymous.

pg 2

Finally are relations. Object-oriented programming is built on two asymmetric relations, is-a
and has-a. Inform allows creation of binary relations between almost any two constructs in
the language, including text strings. Like adjectives, relations are either-or: either the
friendship relation holds between two person instantiations or it doesn't. Moreover, many
constructs can check a relation, the repeat loop being the simplest: "repeat with ally running
through resourceful people which are friends with the player".

Of all programming languages, Inform 7 currently most resembles natural language. Knuth's
ideas of literate programming reinforce this, as evidenced by the official website,
Inform7.com. Terminology useful in describing Inform 7 follow.

Domain-specific. It compiles to a virtual machine not used outside of the interactive fiction
community, and rules are restricted to three parameters: the highest arity a verb of English
may have.

Event-based. Events are called "actions" because the game player's commands trigger
protagonist actions in the simulated, turn-based gameworld.

Object-based. Single-inheritance and polymorphism are supported, but abstraction,
modularity, and namespaces are poor to absent. Inform 7 is a white-box development
language by design. Scalability and security are of no concern.

Macro language. Technically, Inform 7 is a macro language for Inform 6, a weakly-typed
multiple-inheritance traditional programming language. All Inform 7 code becomes Inform 6
code before Inform 6 compiles to the virtual machine's assembly. The dev team takes care to
hide this complication from novice users, but inline Inform 6 code, as well as inline VM
assembly, can be used to powerful effect.

Strongly typed. You'll swear you're in Pascal again, but the type system supports generic
types and type variables. When all else fails, inline Inform 6 code will circumvent.

Statically allocated. Although extensions can be installed to circumvent this, and text
modified at runtime skirts it, Inform's motto is "one pointer, one block". This greatly
simplifies things for the target audience even if all the deep copying slows naïve code.

Pronounceable, Type-able. Perhaps voice-recognition input methods for coding will one
day become the norm. Until then, you can transcribe Inform code over your friend's
telephone. Additionally, the Dvorak keyboard layout optimizes the placement of letters,
which Inform makes almost exclusive use of. Dvorak doesn't do much for punctuation, which
traditional languages favor.

Eschews One True Construct. Some languages can say "everything is an object" or
"everything is a list". Inform does not have One True Construct, though the powerful type
system can bring objects, enums, rules, etc. under the same umbrella for the same effect as
having a common parent class. Theoretically, the lack of a unifying construct eases learning
as each construct can be learned independent of anything else, and constructs implement
themselves however makes sense.

Easy To Read, Hard To Write. Empirically, Inform has proven to be easy to read but hard to

 The Inform 7 Programmer's Manual pg 3

write. The natural language appearance can be a will-o-wisp at times, luring the author from
the path of clear grammar, as there are many phrasings that Inform "ought" to recognize, but
does not. Conversely, creating uncommented code beautiful enough to be worth publishing is
a viable sport. Such code can deliver its meaning even to those who aren't programmers.

Semantic Concision. Inform boasts some unique semantic conciseness on top of its extreme
readability, which will hopefully be emulated in programming languages to come. For
example, this is a single rule from a particular game.

Instead of a suspicious person (called the suspect) burning something which is
evidence against the suspect when the number of people in the location is at least two,
try the suspect going a random valid direction.

That rule breaks down like this.

"Instead" is the rulebook which owns the rule. The rulebook's name comes first, and there's
precisely one of them.
"of" is one of the many ignored prepositions allowed in that place, for readability.
"a" is an article, and ignored.
"suspicious" is an adjective on class Person.
"person" is the class of the first parameter to the burning action.
"(called the suspect)" names the first parameter so we can reference it elsewhere in the rule.
"burning" is the action, the event, usually triggered by the player entering "BURN
EVIDENCE". It takes two parameters, of types Person (the actor) and Thing.
"something" is synonymous with "a thing" just as "someone" is synonymous with "a person".
It is class Thing.
"which" flags that we're using a relation to narrow down what Things may trigger the rule.
"is evidence against" is a many-to-many relation, thing-to-person. Contrast the number-to-
number “is less than”.
"the suspect" is to what we're relating, which in this case is the first parameter.
"when" is synonymous with "if", but is used in rule preambles while "if" is used in imperative
code blocks.
"the number of" is a function that will count the members in the following set-description.
"people" is, again, a name for class Person.
"in the location" is a shortcut phrase for a person-to-room relation wherein the person is
always the player.
"is at least" means equal to or greater than. If the suspect is alone, our rule won't apply.
"two" can be written as 2, but Inform is unusual in that digits tend to stick out like sore
thumbs.
"," the comma ends the rule preamble and begins the imperative code block. Frequently a
colon must go here.
"try" will initiate a new action, and the whole sequence of rulebooks that that entails. In this
case, the Going action will be called.
"the suspect" will apparently try a new tack in destroying the self-incriminating evidence he's
holding, because he's not alone.
"going" takes two parameters, of types Person and Direction.
"a random" chooses one member out of a set-description. The following two words define
this particular set of instantiations.
"valid" is an adjective on class Direction. It is rare the room that has exits in every direction!

pg 4

"direction" is a class. The twelve standard instantiations are the eight compass points plus
Up, In, Down, and Out.
"." the period ends the rule. So would a blank line.

Rule preamble constructs like someone hungry eating something edible are not action
invocations -- that would be try Mario eating a mushroom -- and not action definitions --
multiple rulebooks do that -- but rather, they are very much like a regex, applied to the state of
the whole work rather than to a piece of text.

Excepting the automatically included Title and Author line on the first line of the source, the
Hello World program is this.

My apartment is a room. When play begins, say “Hello world.”

Every program must have at least one instantiation of class Room, which is where the virtual
action takes place. (So the smallest program that will compile is: Foo is a room.) Comments
belong in square brackets, and the IDE will color them green.

A final note: In this guide as well as in Inform's official documentation, "the parser" always
refers to the runtime parser, our player's simplistic VERB NOUN PREPOSITION NOUN
parser. It does not mean that part of the Inform 7 compiler itself.

 The Inform 7 Programmer's Manual pg 5

The Firehose

“Information is gushing toward your brain like a firehose aimed at a teacup.”
– Scott Adams, cartoonist, on the complexities of modern life (1996)

Because Inform 7 source is not cryptic, I don't feel we need much exposition before showing
source code. It is fairly easy to see what any natural language-inspired programming
language is trying to accomplish simply by reading source. The difficulty with learning
Inform 7, besides the whole rulebook thing, will be trying to see the grammar and types
behind the pretty façade so you can actually write it. So in this chapter, The Firehose, we go
on a whirlwind tour of the language reading code samples and mapping common constructs
into Inform. For brevity, the very first automatically-added line of the source which has the
work's title and author won't be shown in this guide.

The apartment is a room. "Behold Bob's apartment. That smell is coming from the pile
of dishes in the sink."

The apartment complex's lobby is south of the apartment. "Rows of mailboxes are set
into the lobby wall. Box 114 is Bob's."

Mr Bob Dobalena is a man in the apartment. "Bob sports a well-loved Transformers t-
shirt with acid-washed jeans."

T-shirt, jeans, and a pair of shoes are wearable things. Bob is wearing the shoes, the T-
shirt, and the jeans.

Instead of examining the player, say “You've come to visit your old college friend,
Bob, and are standing in [the location].”

We have two Room instances (apartment and apartment complex's lobby), one Man instance,
and three Thing instances (T-shirt, jeans, pair of shoes) with their boolean wearable property
set to true. The quoted text that's just floating by itself out there becomes the initial
appearance property of Thing and its subclasses, or for anything else, the description property
(not to be confused with the set-description type.) There's a few relations in there as well. The
mapping-south relation ties the two rooms together, and must exist for going events on the
obvious direction instance. By default, the mapping-north relation is also sensibly set. The
wearing relation is thrice asserted to hold between Bob and each article of clothing. Finally,
the instead rule changes the behavior of the Examine event, our player's command
EXAMINE ME, which typically prints “As good looking as ever.”

The source accomplishes a lot with little writing. One sentence instantiated three Things – the
three pieces of clothing "are ... things" – and set a boolean property on them at the same time
– all three pieces are "wearable things". The next sentence simultaneously set three relations,
between Bob and each article of clothing. Object names can be abbreviated (Bob, shoes).
The text that's printed in response to examining fills in the name of whichever room the player
is standing in.

pg 6

Next we'll show variable declarations of every major type. For now, know that is and are are
perfectly synonymous and the articles a, an, and the are simply stripped from the source.

X is a number that varies. Y is a number variable.
Deadline is a time that varies.
An excuse is some text that varies.
My favorite toy is a thing that varies.
The current manager is a person that varies.
The ocean currents are a direction that varies.
The best spot is a room that varies.
The light switch's boolean is a truth state that varies.
The guru's answers are a table name that varies.
My secret plans are a rulebook that varies.
What worked last time is a rule that varies.
My regex target is some indexed text that varies.
An abeyance is a stored action that varies.

And now some examples of supplying initial values. Usually defines a default value that can
be overridden by a specific is. Usually is very useful for creating class properties with a
default value, which specific instances can override at compile-time. Same goes for globals.

X is usually 2. Y is 5.
Deadline is usually 4:30 pm.
The excuse is usually "I don't know"
My favorite toy is usually the red Ferrari.
The current manager is Bob.
The light switch's boolean is usually true.
The guru's answers are usually the table of deep answers.

Learning to write rules for the various player-generated events (actions) and library events
(activities) is core. The rule's preamble is much like a regex on the state of the game, while
the rule body is simply imperative code. All rules belong to a rulebook, and the rulebooks a
game author usually writes action rules for are, in order of execution, before, instead, check,
carry out, after, report, and every turn. Some of the usual player actions are: looking,
examining, taking, dropping, taking inventory, going, opening, closing, inserting it into,
putting it on, removing it from, plus a few system-level (“out of world”) actions such as
saving the game, restoring the game, and quitting the game. By default, an instead or after
rule will cause execution to hop immediately to every turn, and a check rule is expected to do
the same though by default it does not. Out of world actions only use the check, carry out, and
report rules, and sometimes not even all of those. For example, once quitting the game is
carried out, the software is no longer running to report anything.

It is easier to show all parts of a full rule preamble than explain each part in turn, rather than
starting with simpler preambles and working one's way up. Ready your teacup.

A check rule for an actor inserting my favorite toy into the jeans when the time of day
is before the deadline:

say “[The current manager] would fire [the actor] for stuffing [my favorite toy]
down there!” instead.

 The Inform 7 Programmer's Manual pg 7

Syntax requires the rulebook name first, excepting articles like a which are practically
whitespace. Here we use check. Rulebook names can be one word or many, and tend to be or
start with either an imperative verb (check, carry out, report) or a subordinating conjunction
(before, after, instead). That isn't required, but it reads better because actions are always a
present participle (the -ing form of a verb). Rulebooks which don't typically hinge on an
action, such as every turn, are named to stand alone, or mesh well with when or while which
usually follows their name.

Next can be some optional words: rule, for, of. They do nothing except improve the flow of
reading. Here we used both rule and for only for the sake of an example. Instead almost
always uses of, but normally, we would have begun Check an actor...

Anyway, after the rulebook name is, optionally, the performer. Here we used an actor so the
rule applies to all characters, not just the player. (The an is one of the few times when a
particular article is required.) Other options are 2) omit it entirely, so the rule only applies to
the player; 3) a specific named character such as Bob, provided Bob is not the player; 4) a set-
description, such as a resourceful person; or 5) someone, which means anyone except the
player. The imperative rule body references what matched with the variable the actor.

Next is the action. The action's full name is inserting it into but only the part before the it goes
here. So, inserting. For the before, instead, and after rulebooks our options also include
doing something which means any action, or a list of actions such as looking, examining, or
taking, or variations on doing something except looking, inserting, or examining. For the
exception list, we can check the parameters as well, but the arity of the check must be equal:
doing something except inserting or examining someone would be rejected. But doing
something except inserting someone or examining someone would be fine, as they both check
the same arity.

Next is the noun fed to the action, such as whatever is currently in my favorite toy. We can use
a set-description here as well. The variable the noun holds what matched. Or, if the
parameter is of a non-object type, one of the <type> understood variables is used, such as the
topic understood, the time understood, the number understood, etc.

For actions with two parameters, a preposition follows. While the player doesn't always need
to enter a preposition – consider GIVE BOB THE TOY – the programmer does. Since the
action is named inserting it into, our preposition is into. (The it in the action name is a
placeholder.)

The second noun follows, but we could have stuck the colon here to end the preamble.
Instead, the jeans, or any variable or set-description. Something is synonymous with a thing,
and is the usual catch-all. The variable the second noun, or the <type> understood, holds
what matched.

But wait, there's more. The word when means if, and any valid condition can follow it. The
time of day is a time variable in the library, automatically advanced one minute per
understood player command. The “is before” means “is less than”.

Finally, the colon marks the end of the rule preamble – the regex-like part of the rule – and the

pg 8

start of the imperative code block. (One piece of syntactic sugar: a comma can be substituted
for the colon if the imperative code block is a single line, and the rulebook begins with before,
after, instead of, when, or every turn. Very pretty code can result.) Here our block consists of
a single print statement. The trailing “instead” is another bit of syntactic sugar for appending
the statement rule fails. Since the rule failed, the rulebook also fails, and execution skips
ahead to the every turn phase of the turn. Since that skips the carry out rules, the action does
nothing except print our denial message in the situation our preamble describes.

All rules in the language follow that pattern. As for rulebooks, they are simpler. Every rule
ends in one of the statements rule succeeds, rule fails, or make no decision. If we don't
specifically use one of those three statements at the end of the rule, the rulebook's default is
automatically appended. Rule fails and rule succeeds both end the rulebook as well –
whatever task was given to the rulebook has completed. Make no decision tells the rulebook
to try the next applicable rule, and is the default for any rulebook that runs all its rules. Make
no decision is the default for when play begins, before, check, carry out, report, every turn,
and almost every other standard rulebook. Of course, instead defaults to rule fails. After and
each activity's for default to rule succeeds.

So, some examples with actions. Square brackets outside a text string denote comments.

Report going when the current manager is in the location: say “See ya later, [the
current manager].” instead.

Carry out examining the cell phone for the first time: [once, twice, and for the Nth
time can end a preamble]

now the player worries about Jesse; [worries about would be a relation]
now the cell phone is fingerprinty. [fingerprinty a boolean property]

Some examples with other, background events.

When play begins, say “Once upon a time...”

After reading a command when the player's command includes
“quickly/quietly/slowly”, say “I cannot understand adverbs in commands.” instead.
[slashes mean or]

Before printing the name of Bob, say “Mr. ”

Within a rulebook, rules are sorted according to the specificness of the preamble. So, instead
of examining someone suspicious will always be tried before instead of examining someone
no matter their source code order. All the various restrictions must still be satisfied of course.
This just determines what rules are tried first, and if multiple rules share the same
specificness, they are considered in source code order. Although this setup sounds
frighteningly like building atop shifting sands, empirically it has worked better than
anticipated. This is likely because rules belong to rulebooks, and only one rulebook is
operating at any one time, in much the same way that only one function operates at one time:
the caller is “on hold”. And unlike Prolog's sea of rules, one rulebook is small enough to
remember at once. But when in doubt, there is the Index.

 The Inform 7 Programmer's Manual pg 9

Found in the IDE, the Index is the automatically-generated author's documentation. The
Index button is labeled vertically along the right edges of both panes, and will be empty until
the first successful compilation. The various tabs of the Index list all the constructs in the
author's work as of the latest compile. It's possible to learn a lot just by reading it. The
Actions tab lists all the actions the game knows, both built-in and author-written, and lists the
player words that trigger each. Clicking the magnifying glass icon next to an action name will
show a detail page listing all the rules that can apply to it. The Contents tab lists all variables
and tables. The Kinds tab not only contains the object hierarchy including all instantiations,
but also all other types and under what generic types they fall. The Phrasebook tab holds
procedures, functions, and relations. The Rules tab holds only rules that do not apply to
actions or scenes. The Scenes tab holds detail on scenes and scheduled events, while the
World tab holds the room map.

Now that we've covered rules and the index that would be new to many programmers, we can
speed up our tour. The only thing left to start creating games is how to give the player
synonyms for objects and actions. Set-descriptions can be within the square brackets here,
but generally it's better to allow much at this parsing stage, and use check rules to print better
denial messages for attempts to wear doorknobs or eat Ferraris.

Understand “squint at [something]” as examining.
Understand “dash [direction]” as going.
Understand “stick [something carried by the player] down/into [something]” as
inserting it into.
Understand “Robert” or “Rob” as Bob.
Understand “dude” as a man. [narrows down the referent to objects of class
Man]

Conditions can be attached. The item described is the self or this variable used in other
languages. For properties, a shortcut obeys the current state of the property.

Understand “bastard” or “rat bastard” as Bob when the time of day is before the
deadline.
Understand “fingerprinty” as a thing when the item described is fingerprinty.
Understand the fingerprinty property as describing a thing. [better for
properties]
Understand “smudged” as fingerprinty.

Functions are called to-decide phrases. Because their return values cannot be thrown away,
they will always appear within a larger statement, and so, are named after noun phrases.
Below, bold type shows keywords in the definition before the colon. The colon is where the
function body starts. Decide on is the return statement. The return value comes just before is.
Slashes denote a choice of word (pick exactly one), or when combined with the – double-
dash, the word is optional. Python indentation, or begin and end if/repeat/while, denote
blocks, but begin-end and Python indentation cannot be mixed with each other in the same
function.

To decide which number is (x – a number) smooshed with (y – number): decide on x
multiplied by y.

pg 10

To decide what object is my toy:
if the Ferarri is in the location, decide on the Ferarri;
otherwise decide on nothing.

To decide which person is who wears the pants around/in the/-- house of (p – an
unhappy person):

if p is: [Python style is required to use the switch statement]
– Bob: decide on Edith;
– Jose: decide on Maria;
– otherwise: decide on the mother of p.

Boolean (truth state) functions use to decide if and are named after clauses. Yes and no are
the phrase versions of values true and false, while whether or not typecasts between.

To decide if (p – a person) will be done by (deadline – a time):
if p is Bob, yes;
otherwise decide on whether or not the time of day plus five hours is before the
deadline.

Adjectives can be used as part of set-descriptions, which the above cannot. The pronoun it
refers to the object in question here, but an explicit called parenthetical can name it. One-
liners can use if rather than the colon. The antonym is defined by rather than but is optional.

Definition: a person is overloaded rather than good if the number of workorders
expected of it is at least five.

Definition: a person (called the workerbee) is efficient rather than slow:
repeat with item running through every workorder expected of the

workerbee:
if the completion time of the item is greater than one hour, decide no;

decide yes.

On the downside, parameters cannot sit right next to one another. A word must come
between. But, the type of a parameter isn't just a type or class, but anything from a specific
value to a full-on set-description. As with rules, Inform chooses the most specific applicable
phrase, and in the case of a phrase calling itself, prefers not to recurse if possible. (This is
mainly a safety feature for the lay target audience.) So for the following procedures –
functions which return no value, and sometimes called to-phrases in Inform because to is the
only keyword they have in common – if Jenny doesn't love the player, then invoking her name
causes execution to ping-pong between both applicable phrases.

To tell (lover – a person) I love him/her/them recursively:
say “I love you, [lover].”;
tell the lover I love them recursively.

To tell (lover – a person which does not love the player) I love him/her/them
recursively:

say “I secretly love you, [lover].”;
tell the lover I love them recursively.

 The Inform 7 Programmer's Manual pg 11

To tell (lover – Bob) I love him/her/them recursively: say “Er, how's [abrupt subject
change] coming along?”

Say-phrases are called from within text strings. If constructions are standard, but cannot nest:
“[if Jenny loves Bob]What? Why?[otherwise if Bob loves Jenny]Welcome to the club.
[otherwise]Won't she give me her number?[end if]”

To say abrupt subject change:
if the current weather conditions are not mostly sunny:

say “the weather”;
otherwise if Edith is not in the location:

say “you and Edith”;
otherwise:

say “the Chicago Cubs”.

To say looks like it's (w – a weather condition):
if w is nasty, say “blowing up a storm”; otherwise say w.

A blank line, or a period substituted for a semicolon, ends a phrase.

Named values (known as enums in C) can do most anything objects can do, and needn't be all
defined at once. A weather condition is a kind of value. Some weather conditions are rainy,
partly cloudy, mostly sunny, about to snow, and nasty. A weather condition is a tornado
warning. A metal is a kind of value. The metals are copper, tin, iron, aluminum, platinum,
nickel, gold, and silver. One standard kind of value receives special attention: scenes. With a
during preamble phrase and its own SCENES testing command, scenes are a powerful
organizing principal in an interactive fiction.

The denouncement is a scene. The denouncement begins when the climax ends.
Instead of taking something during the denouncement, say “But the life of a
kleptomaniac seems so empty now.”

Boolean properties. A person can be happy or unhappy. A person can be resourceful. A
person is usually not resourceful. A weather condition can be later in the evening. A weather
condition is usually not later in the evening.

Valued properties. A person has a person called its mother. A weather condition has a time
called the predicted duration. The predicted duration of a weather condition is usually five
hours. Bob's mother is Agnes.

Subclassing. A boy is a kind of man. A girl is a kind of woman. Statically-allocated means no
constructors or destructors. Inform can insert new classes between existing classes. A
conveyance is a kind of container. A vehicle is a kind of conveyance. This does not contradict
the standard a vehicle is a kind of container.

Timed events are rules that self-invoke at a given time or in a given number of turns. They fire
only once, but named ones can re-schedule themselves.

pg 12

At 6:30 am: say “Your alarm clock screams you awake.”

At the time when an email arrives:
say “You've got mail.”; an email arrives in seven turns from now.

At the time when the alarm clock screams:
say “Your alarm clock screams you awake.”;
the alarm clock screams at 6:30 am.

Activities are multi-rulebook events not generated by the player. They exist merely so the
library (or authored extensions) may provide hooks for important events. The three phases of
an activity are before, for, and after. Printing the name, supplying a missing noun, printing a
parser error, and reading a command are the most useful. Other standard rulebooks which are
not full-on activities are does the player mean, persuasion, and unsuccessful attempt by.

After printing the name of Bob: say “ Jr.”
After reading a command when the player's command includes “please/thanks”, cut
the matched text.
After reading a command when the player's command matches “take nap”, replace
the matched text with “sleep”.
For printing a parser error when the latest parser error is I beg your pardon: say
“Please type something in.”

Does the player mean taking the train: it is very unlikely. [getting on or entering the
train, perhaps]

Arrays currently have little support since who would want to read about a hundred perfectly
identical things? Still, it's possible to instantiate numerous unnamed objects, but only if we
specifically create a subclass for it. A coin is a kind of thing. Seven coins are in the sofa. A
light is a kind of thing. There are four lights. While the player can TAKE THREE COINS,
the programmer resorts to set-descriptions and a random, such as a random off-stage coin. (A
random is a decide phrase, not an adjective. The a is required. Off-stage is when location is
nothing.) Tables are 2D arrays, mostly, and can instantiate a slew of objects or named values
at once. Tabs are required between columns. A – double-dash is a blank entry.

A workorder is a kind of value. Some workorders are defined by the table of tasks.

Table of tasks
workorder employee
send invoices Bob
check addresses –
restock Bob

And we close off the firehose with relations. Object-oriented programming is built on two
object-to-object relations, is-a and has-a. Single inheritance is one-to-various, while multiple-
inheritance is various-to-various. Object properties in general are each a various-to-one
relation. Indeed, that's frequently how Inform implements them: the called parenthetical
allows the noun of noun syntax of properties as an alternative to the noun verb noun syntax of
relations. But called is restricted to the singular, so the reversed word may be needed.

 The Inform 7 Programmer's Manual pg 13

Finally, Inform already knows the singular (-s), plural (root), past (-ed), past participle (-en),
and present participle (-ing) forms of be, so the large parenthetical is omitted for such.

Single inheritance relates one thing (called the parent) to various things.
The verb to be the superclass of implies the single inheritance relation.
The verb to inherit from (he inherits from, they inherit from, he inherited from, it is
inherited, he is inheriting from) implies the reversed single inheritance relation.

now dog inherits from animal; [These are synonymous, but note we're not using
Inform's actual class hierarchy.]
now the parent of dog is animal; [The real class hierarchy is immutable at runtime.]
now animal is the superclass of dog;

Assignment relates various workorders to one person (called the employee).
The verb to be expected of implies the assignment relation.

pg 14

Class And Prejudice

Here's the built-in class hierarchy, a total of sixteen classes. (Also, where other languages say
"class", Inform says "kind".) Inform purposely keeps its library lean.

object
direction
room
region
thing

door
container

vehicle
player's holdall

supporter
backdrop
device
person

man
woman
animal

A quick rundown: Room is a discrete location, a place; Region is a container for Rooms. The
class Container means an in-game prop, such as a backpack or hamster cage. A Supporter is a
chair, table, mantel, or other horizontal surface Bob can place things on top of. The player's
holdall is usually a singleton, as it's a container without load limits. A instance of Door can
explicitly connect Rooms, and can be open & closed if not also locked & unlocked. Direction
does NOT connect rooms -- relations do that -- but is used in code to reference the same.
Backdrop always has the boolean property scenery set, and is used for things like the sun in
the sky, the faint but ever-present sound of a nearby creek, and other non-portable objects that
need to remain in the parser's scope while the protagonist travels across several Rooms.
Device is something that can be switched on/off. Animal is treated as a kind of person, just as
pets are.

The positioning of Animal is our first hint that we're stepping out of a scientific worldview,
and into a humanistic one. Likewise, the purpose of the language as a whole is to produce
works of art, not software tools.

Making a subclass is straightforward. Note that are can replace is, and most any article can
replace a.

An archway is a kind of door.
An archway has a number called the horizontal clearance. It is usually 6.
An archway is always open.
An archway can be magic or mundane. An archway is usually not magic.

This subclasses archway from door. It gives it a new numeric property call the horizontal

 The Inform 7 Programmer's Manual pg 15

clearance with an initial value that can be overridden by a particular instance. Then it
permanently sets the pre-existing open/closed property to open so attempts to later code a
closed archway will result in a compiler error. Finally, it gives it a new anonymous boolean
property with named values magic and mundane (as opposed to a property called "magic"
with values "true" and "false"). It initializes this to mundane. We could have just said an
archway can be magic and it would still work, but naming the antonym usually improves
readability.

One instance of person is always provided for us: yourself. The player is a person variable
initialized to yourself unless defined otherwise. (Only the player refers to the avatar as ME.)
One instance of Object (the root-level class) is always provided: nothing, the nil pointer.
Occasionally synonyms nowhere, nobody, no-one, and no one may be used, but it's usually a
special-case syntax.

The player is Bob. [the yourself object still exists, though unused]
[...]; now the player is Bob; [imperatively, at runtime]

Object names can unfortunately occlude one another. If we have an object "car", and then an
object "car key", it frequently happens that the parser cannot refer to the car. Inform supplies
objects with a property, privately-named, which prevents automatically exporting an object's
source code name to the player's parser. Instead, an explicit understand line will be required.

The articles a, an, and the, and including some when used similarly, are only mostly ignored
in Inform. Inform will mimic in the game's output the articles used in the source, with the
object's first mention in the source given extra weight in case of inconsistent usage. Objects
created with some will be treated as mass nouns, and objects whose names are always
capitalized in the source are capitalized as proper names.

Inform does not (currently) support arrays, but it does have a couple of alternatives. A later
section shows us tables, which are similar to 2D arrays. But here, we can instantiate up to a
hundred indistinguishable instances of a kind at once. A subclass is required for this, but that
is easy enough to arrange.

A coin is a kind of thing. 55 coins are in the couch. Three coins are carried by the
player. There are seven [more] coins.

That last definition creates objects but leaves them off-stage. The commented-out word
“more” is only placed there for clarification. It is especially useful in cases like: There are
seven coins. Three coins are in the couch. Those sentences might imply there are a total of
seven coins in the world, rather than ten, seven being off-stage and three on-stage.

There's a few things to know about unnamed instances. We must subclass before instantiating
or else we'll have a single object called "55 coins". We can't reference “the thirty-second
coin” like we could with an array, but instead must use set-descriptions with a random to grab
one: try taking a random tarnished coin which is not carried by the player. And it's up to us
to verify such an instance exists. We can't specify a quantity of them as in now the player
carries three coins or try taking three coins because Inform won't know which three coins, but
we can manipulate all of them as in now the player carries every coin. So, instantiate away,
but as far as Inform 7 is concerned, there's only zero, one, or infinite coins.

pg 16

Our player can TAKE THREE COINS if the action's understand line applies to [things],
plural, as taking and dropping already do. Furthermore, we can expose the various properties
(adjectives) of our new subclass to the player's parser, giving the player the ability to
differentiate with TAKE THREE TARNISHED COPPERS. As referring to exposes it as a
pure adjective, while as describing exposes it as both adjective and noun.

A coin can be pristine or tarnished.
A metal is a kind of value. The metals are copper, silver, and gold. A coin has a metal.
Understand “coppers” as copper. Understand “silvers” as silver. Understand “golds” as
gold.

Understand the tarnished property as referring to a coin. [tarnished or pristine by
itself won't grab a coin]
Understand the metal property as describing a coin. [but copper, silver, or
gold will]

Though we wouldn't normally expect the player's parser to be more expressive than the
programmer's, in the case of taking three coins, the runtime always has the option of
interactively asking for details ("Which did you mean?") while we do not.

 The Inform 7 Programmer's Manual pg 17

The Coding Imperative

Here are examples of all the basic imperatives. Read the print statements within.

let Z be 5; [Local variable declaration; Type is usually inferred.]
let t be indexed text; [Explicitly stating type, for next line.]
let t be “Hello world”; [This will be indexed text instead of text.]
now X is 5; [assignment]
now every V W is X Y Z; [assign properties X, Y, and Z to all instances of W

which already possess V.]

if X > Y, say "A comma is synonymous for 'then'.";
otherwise say "'Otherwise' (or 'else') must be a one-liner if the 'if' was a one-liner. No

punctuation follows the word.";

if X > Y begin;
say "'Begin' requires a semicolon of its own.";

otherwise;
say "As does the matching 'otherwise' and 'end'.";

end if;

if X > Y:
say "Python-esque style is OK as long as we don't mix the two styles in the

same function.";
otherwise:

say "Posting code to internet forums usually corrupts the tabs, but tables
require tabs anyway.";

if X is greater than Y begin;
say "This is a else-if chain. Also, notice that relational operators can be spelled

out.";
otherwise if X is Y;

say "Only a semicolon is found for the trailing conditionals.";
otherwise;

say "The final otherwise is the same as usual.";
end if;

if X is greater than Y:
say "This is a else-if chain in Python style.";

otherwise if X = Y:
say "The punctuation here is more regular: always a colon, no matter what.";

otherwise:
say "The = is rarely seen by itself, in practice; 'is' is easier to type.";

unless X <= Y, say "'Unless' means 'if not'. Also, inequalities are written >= or <=,
never => or =<.";

pg 18

if X is:
-- 1: say "A switch statement masquerades as an if statement. 'Unless' cannot be

used.";
-- 2: say "Python style only.";
-- otherwise: say "There is no fall-through between cases, and no goto to

restore it.";

if my favorite toy is:
-- the red Ferrari:

say "Numbers and objects both can be used in switches.";
-- the jeans:

say "Also note the further indentation of the cases, and their subsequent
lines.";

repeat with X running from 1 to 10:
say "'Repeat' is the usual loop construct. It has [X] forms. This enumerated one

isn't used much.";

repeat with clothing running through every wearable thing:
say "The 'description' type describes a set of objects.";
if the clothing is the pair of shoes, say "Also, 'every', 'each', or 'all' aren't

required here but may read better.";

repeat with target running through all limbs:
if the target is the head, say "We can repeat through named values, scenes,

action names, etc. just as easily.";

repeat with programmer running through the men who are in a lighted room (called the
mainframe's area):
say "[The programmer] in [the mainframe's area] says we can do some pretty

complex stuff with 'descriptions'.";
next; ['next' starts the loop over at the next iteration. C calls this 'continue']
break; ['break' kills the loop immediately]

repeat through the table of designs:
say "Tables are 2D arrays. We'll look at them in detail in their own section.";

while X is at least Y begin;
say "While loops are rarely seen in practice.";

end while;

Semicolons divide statements as usual, but the last semicolon should instead be a period.
Alternately, the last statement should be followed by a blank line. This is how the end of a
function is signified.

Inform calls the above imperatives, and other things like them, phrases. Functions are also
called phrases, because they are invoked similarly. But rules are different; they invoke
themselves based on game events and other worldsim situations. Here's some quick examples

 The Inform 7 Programmer's Manual pg 19

just so we'll have somewhere to try out our imperative code.

When play begins: say "Hello world!".
Every turn: say "La-dee-da."
Instead of taking yourself, say "You pull yourself up by your bootstraps and read on."

Remember to instantiate a room.

pg 20

Boolean Adjectives

Adjectives, and the set-description type that invokes them, are Inform's big win over the
COBOL and HyperTalk families of natural language programming languages. Typically used
for objects, a description uses combinations of adjectives and/or relations with a class to
define a set of instantiations. This is responsible for a great deal of Inform's conciseness over
traditional programming languages. First we'll look at how to define the adjectives.

There are a few ways to define a boolean adjective. The first creates an anonymous boolean
property with named values.

A thing can be spiffy.
A person can be grumpy or happy.

now the iPod is not spiffy;
if Mary is happy, now Bob is grumpy;

Inform of course understands not spiffy but it also understands not grumpy as synonymous
with happy and vice-versa. Also, since person is subclassed from thing, a person can also be
spiffy. Frequently in OOPLs, new properties and methods cannot be added to a pre-existing
class because doing so would break pre-existing code that uses it. Subclassing is required to
add such embellishments. But since Inform isn't designed for reusable code or team coding, it
allows directly modifying classes, and those changes propagate down the hierarchy regardless
whether they are built-in or not. The allowed modifications are additive only, however.
(Though sectional replacement of source code alleviates even that.)

The second way to define an adjective works like adding a boolean-returning method to a
class. It also has a one-liner version using if instead of a second colon:

Definition: a person is kinda dull: [...]; decide no.
Definition: a person is unlikable if it is kinda dull or it is grumpy.
Definition: a person (called the academic) is laconic rather than chatty if the
academic is [...].

The pronoun it refers to the object on which the method is called, where traditional languages
use "self" or "this" or some such. This can be customized with the called parenthetical. An
antonym may be defined with the rather than phrase. Definition: adjectives aren't restricted
to objects. Named values are also common here.

(The third way, using a plain to decide if boolean function, loses the flexibility of appearing in
set-descriptions. But, being a function, it can take any number of arguments, and may use the
powerful parameter-matching logic of same. We will see them soon.)

The adjectives are checked the same way regardless whether they are data or calculated, so
changing an adjective from a variable implementation to a calculated implementation (or
vice-versa) only requires adding or removing any lines that explicitly set the adjective's value.
Client code that merely checks the value needn't change.

 The Inform 7 Programmer's Manual pg 21

repeat with associate running through every chatty not grumpy spiffy person:
say "Hi [associate]."

pg 22

Patterned Procedures

A procedure's “name” in Inform 7 is not an exact match of a single identifier, but a simple
textual pattern. The word to starts the definition, and parenthesis enclose the local variable
name, a hyphen, and the type. A colon ends the “name” and the imperative code block begins.

To plainly greet (friend - a person):
say "Hi [friend]."

The above is invoked readably.

plainly greet Dr. Muller;

The / forward slash can be used to allow synonyms for a word by acting as a high-precedence
disjunction: choose exactly one. Its effect ends at the first space. The -- double-dash in a
disjunction means the word is optional: choose at most one.

To ponder/mull over/-- (good point - a thing) for (awhile - a time) as (ponderer - a
person):

say "[Ponderer] sits back for about [awhile]. 'Hm, [good point] is a very good
point.'"

The following invocations are all equivalent.

ponder the best idea yet for 7 minutes as Dr. Muller;
ponder over the best idea yet for 7 minutes as Dr. Muller;
mull best idea yet for 7 minutes as Muller;
mull over the best idea yet for 7 minutes as Dr. Muller;

A parameter can immediately follow the to that begins the definition, but parameters cannot
sit immediately side-by-side.

To (ponderer - a person) ponders (good point - a thing): [ok]
To ponder for (awhile - a time) (good point - a thing): [error!]

The types of the parameters needn't be a single type, or even a type at all. Set-descriptions
and particular values both may narrow the scope of the input. Like actual rules, this is a
handy feature for special cases.

To plainly greet (foo - people which are friends with the player):
To plainly greet (foo - a resourceful person):
To plainly greet (foo - nothing): say “Run-time error: called 'plainly greet' with
nothing.”

While set-descriptions narrow the accepted range of input, generic types allow one phrase to
cover many different types. The type of a parameter itself can be captured and used
elsewhere in the definition and/or code block via the phrase value of kind K and similar

 The Inform 7 Programmer's Manual pg 23

variables L, M, etc. Sayable value, word value, pointer value, arithmetic value, enumerated
value, and the most generic of them all, value, are the known generic types. They can be used
with or without of kind K.

To debug-print the differences between (construct one – a sayable value of kind K)
and (construct two – K):

Let creates a local variable. Let is also how we create flexibly-sized types like list and indexed
text, since they cannot be statically allocated and the language does not allow dynamic
allocation.

let X be 5;
let the typical exclamation be "That's cool!";
let the articles of clothing be the list of things worn by Bob;
let M be { the red Ferrari, the pair of shoes };
let the modifiable exclamation be indexed text; [These work...]
let the modifiable exclamation be "That's cool!"; [...as a pair.]

Stop is the plain-jane return statement. It isn't used much, partly because of some other
synonyms for return, and partly as fallout from the rules-based structure of the language.

A final natural-language feature cloaks a bitfield as a series of comma-separated sub-phrases.

To go hiking, into the woods or up the mountain:
if into the woods then say "Watch out for badgers.";
if up the mountain then say "Better take your compass.";
say "You go hiking."

Clever naming not only affords client code that is easy to read, but also creates library
invocations that are easy to make a half-remembered guess at. The latter is, in practice, a
wonderful time-saver. When we define functions, we should take client code readability into
account. For example, we needn't add the articles in front of a parameter, because the
parameter itself will eat it.

To ponder the/an/a/-- (nefarious plans - a rulebook): [unnecessary]
To ponder (nefarious plans - a rulebook): [better]

But we should explicitly add the articles if it occurs elsewhere, such as this example that
pretends to understand an adjective in some cases.

To ponder the/an/a/-- foiled/new/-- (nefarious plans - a rulebook): [necessary]

To phrases tend not to be used too much, for the similar reason that methods in a OO language
tend to reduce global function use. Instead, Inform 7 has rules, grouped into rulebooks, which
we'll get to shortly. To-phrases do have a nicer invocation syntax and essentially unlimited
arity to recommend them over rules, but they lack some of the flexibility of rulebooks, as we
will soon see.

pg 24

Functions Decide on a Value

Because strong-typing requires returned values to be used, functions will always be used in a
larger statement. Hence their names tend to be noun phrases rather than sentences.

To decide which room is my favorite place: [...]; decide on My Bedroom.
To decide what person is the brother to/of (sibling - a person): [...]; decide sibling.
To decide which object is my fabulous doodad: decide on a random thing.

ponder the best idea in my favorite place;
if the brother to the noun is not the noun, say "[The noun] has a brother, [the
brother of the noun].";
if my fabulous doodad is nothing, say "I'm fresh out of fabulous.";

To decide which, or synonymously, to decide what, begin the definition. The return value
follows, and then is. The function's name is only that part between is and the colon. The
return statement is decide on. Due to strong-typing and nothing being pronounced an
instantiation of class object, we cannot decide on nothing except when the function's return
value is type object.

Boolean functions must use the slightly different whether/if variation, and the name lies
between the whether or if and the colon. Since they are invoked from if statements and rule
headers, their names are usually clauses sans subordinating conjunction.

To decide whether (pants - a thing) is/are on fire:
decide on whether or not a random chance of 1 in 2 succeeds.

if the brother of the noun is on fire, say "That's gonna leave a mark."

The phrase whether or not typecasts an if-condition (such as if "a random chance of M in N
succeeds") to a truth state (boolean), which can then be returned.

 The Inform 7 Programmer's Manual pg 25

Say Phrases

It is so common to slightly vary some prose for a given situation that Inform specifically
provides for procedures called from within a say statement's prose. Say-phrases are in a box
separate from to-phrase procedures and to-decide functions, but otherwise work identically.
They are invoked by square brackets within a text string.

Gendered pronouns are a common case, and most are built-in.

To say He-She for (P - a person):
if P is plural:

say "They";
otherwise:

if P is female, say "She";
otherwise say "He";

To say (P - a person) mulls/ponders --/over (idea - a thing):

[...]; say "[He-She for Chris] glances at you[Chris ponders tar-and-feathering].";

Putting a bare object or variable name within the square brackets prints the entity's name or
variable's value, respectively. This works for nearly every type in the language, though can
usually be overridden like so.

To say (code - a rule): abide by the code.

That would execute the rule or rulebook from within prose, rather than printing something.

say "Chris seems to make a decision.[the formulate plans rules] But you don't know
what.";

Inform ships with a number of basic imperatives for say phrases. The docs have the full list,
and the Extensions chapter has information on creating new multi-part To Say constructions.

say "He put on [if the jeans are stained]yesterday's[otherwise]his[end if] jeans.";

say "The weather was [one of]rainy[or]sunny[or]windy[at random].";

pg 26

Types of Types

We know defining a class that implements a list of numbers is tedious, but not as tedious as
doing it again for strings, objects, and any other type the language supports. Most languages
nowadays provide for this problem, such as the templates of C++. Inform too offers generic
types. Arithmetic value allows numbers and units. Pointer value includes indexed text, stored
actions, and other variable-sized chunks of memory. Word value covers all non-pointer
values, including objects. Sayable value is any type allowed in a print statement, which is
almost anything. Enumerated value is named values, which includes scenes. And finally,
value is all of them: just about anything that can be passed as a parameter. The Kinds Index
in the IDE shows what types belong under which umbrellas. We can use them to define a
phrase like this.

To place angle brackets around (foobar - a sayable value): say "<<[foobar]>>".

To print the elements of (stuff - a list of sayable values): say "The list contains
[stuff]."

Kind variables tie two or more parameters to the same type. This is particularly useful when
one parameter is an aggregate type, and the other is the type being put into, brought out of, or
compared to an element of, that aggregate. Kind variables are always a single capitalized
letter, and traditionally use K and L.

To decide which K is the initial contents of (stuff - a list of arithmetic values of kind
K): ...

To we will ask if (col - a K valued table column) is (data - a word value of kind
K):

The words value of kind must precede exactly one of the Ks. That parameter will be the one
that declares what K holds, so the other parameter's input will be expected to match. For
example, the following line means the second parameter decides what K is, so the compiler
will search for a table column of that type.

To we will ask if (col - a K valued table column) is (data – a value of kind K):

While this means the first parameter's type sets K, and the second will be interpreted as the
type in question.

To we will ask if (col - a value of kind K valued table column) is (data - K):

It makes a difference. A very few types are implicitly casted between each other, such as text
and indexed text, and whether K is text or indexed text will likely matter in the body of the
function. Other times, the compiler may have a choice of constructs with the same name but
different types. Or, the same words of source text may have radically different interpretations
depending on what type the compiler expects it to yield. And one final note: the return value
cannot set the kind variable. It may use one, as the above example with initial contents, but

 The Inform 7 Programmer's Manual pg 27

cannot declare it.

The parameter name of kind of value is an interesting case because, rather than accepting a
particular instantiation of a restricting type, it asks for the source code's name of a type, such
as object or room or weather condition. K is set to the type, and then K is used in the body of
the function in the same places and same ways as the word itself would have appeared. The
feature is also very useful in typecasting, via Inform 6.

To rattle off all the (name of kind of value K):
repeat with x running through K:

say "[x], "

To decide which K is the (mystery - a value) as a (name of kind of value K): (-
{mystery} -).

We can then write:

rattle off all the scenes;
rattle off all the tattoos;
rattle off all the rooms;
let whatsit be foobar as a tattoo;
let whosit be foobar as a person;
let howsit be foobar as a rule;
let whensit be foobar as a scene;

And so on. Most OO languages tend to treat everything as an instantiation of a class. In
Inform, many constructs are not objects, but the type system allows us to use the same
function on everything just the same. (Note that parameter types condition and action are still
a special case. They can only be used in a phrase when the body is written in Inform 6. The
later chapter on Inform 6 covers them.)

To-phrases and relations can be passed as parameters, but still strongly-typed. Examples of
the type of a phrase would be:

a phrase (length, length) -> nothing
a phrase nothing -> number
a phrase (number, number) -> number

And for relations:

a one-to-various relation of people to cars [asymmetric is always assumed]
a symmetric one-to-one relation of people ["to people" is assumed]
an equivalence relation of people

One thing Inform cannot do is an indefinite number of parameters, such as the printf function
in the C programming language. And because Inform is strongly typed, there must be a slew
of phrases that apply a passed-in phrase to 1, 2, or 3 inputs, and returning a value or not. For
phrases that return a value, use one of (phrase) applied, or (phrase) applied to (value), or
(phrase) applied to (value1) and (value2), up to three parameters, just like rules. For phrases

pg 28

that do not return a value, apply (phrase), or apply (phrase) to (value1), etc.

In lieu of indefinite parameter counts, Inform can pass around lists of whatever, and has the
higher-order functions. Map, as (phrase) applied to (list), takes a list, runs the passed-in
phrase on each element in turn, and returns the new list. Filter, as filter to (description) of
(list), returns a smaller list than the one passed in, having removed what elements don't fit the
set-description. And reduce, as (phrase) reduction of (list), which returns a single value.
However, these only emulate the syntax of functional programming. Without lazy evaluation
or anonymous functions, this style of programming leaves much to be desired, and cannot at
all deal with lists of infinite size in the common generator-consumer pattern.

 The Inform 7 Programmer's Manual pg 29

Sweet Relations

In lieu of numerical relationships, qualitative either/or relationships frequent interactive
fiction. Relations disguise 2D boolean arrays behind some of the best syntactic sugar in the
language – namely, behind verbs. Relations are written with the infix form of English verbs.
Asymmetric (X to Y) and symmetric (X to [one] another or X to each other) relations are
possible, with one-to-one, one-to-various, various-to-one, and various-to-various flavors, plus
the equivalence relation ([various] X to each other in groups). The called parenthetical, only
on a singular side, allows property syntax as well.

Marriage relates one person to another (called the spouse).
[one-to-one symmetric]
The verb to be married to implies the marriage relation.

Bob is married to Jane.
When play begins, if Jane is married to someone, say “Jane's husband is [the spouse of
Jane].” [prints Bob]

Symmetric relations are always of type X to type X. So marriage cannot be “one man to one
woman” nor can friends be anything but person to person.

Friendship relates people to each other.
[various-to-various, symmetric]
The verb to be friends with implies the friendship relation.

if the brother of the noun is married to the second noun, now the noun is friends with
the second noun;
repeat with pal running through every person who is friends with the brother of the
noun:

When we define a verb like to be X, Inform can automatically conjugate it. But for to X we
supply the other five forms in parenthesis. They are, in order, the singular (-s), plural (root),
past (-ed), past participle (-en), and present participle (-ing). At least either the singular or
plural must be supplied. He/she/it may be used interchangeably, but they has no synonym.

Like-minded relates various people to each other in groups.
[an equivalence relation]
The verb to draw (he draws, they draw, it drew, he is drawn, she is drawing) implies
the like-minded relation.

Asymmetric relations may find a reversed synonym useful in set-descriptions.

Teenage love relates various people to various people.
[tragically, an asymmetric relation]
The verb to be in love with implies the teenage love relation.
The verb to be lusted after implies the reversed teenage love relation.

pg 30

Additionally, we can define the verb as to be able to X, which means the relation is used like
can X. The parenthetical has only the past participle (-en) form, and is required.

Memorability relates various people to various things.
The verb to be able to remember (he is remembered) implies the memorability
relation.

Bob is a man. The time he spent in jail is a thing.
Bob can remember the time he spent in jail.

The to be able to... relations (only) can be stated in the passive voice as well. So Bob can
remember jailtime may be stated jailtime can be remembered by Bob. Effectively, the
reversed version is provided automatically. The phrasebook part of the Index shows the
available wordings.

Though only an asymmetric various-to-various relation actually needs a whole 2D array, the
other kinds of relations are some sort of subset of one. Any relation with a singular is
frequently implemented as a property, as are equivalence relations. Relations on very large
(text) or infinite (numbers) domains will use sparse array implementations, such as properties
whose type is a list of some sort.

Much like boolean adjectives, relations can be implemented as calculation rather than storage.

Siblinghood relates a person (called X) to a person (called Y) when X is the brother
of Y or X is the sister of Y.
The verb to be a sibling of implies the siblinghood relation.

The syntax to check whether a relation holds between two things is the same regardless the
implementation, so swapping between them only requires fixing up wherever the relation was
explicitly set between things. It is worth nothing that the relativistic relations of math are
implemented this way ("The verb to be greater than implies the...") as well as almost all
spatial relations (under, on, in, northeast of, etc.)

Relations can be put into lists, or passed into functions.

To decide whether (relationship – a symmetric various-to-various relation of people
to people) is a good reason for trusting (P – a person): decide on whether or not
relationship relates P to the player.

Asymmetric is assumed, so only symmetric is defined. The one-to-various and flavors
obviously cannot be used with equivalence. Finally, empty describes the default condition.
The phrase relates...to... can be used in if and now statements. In an if, types and negation can
be used: if Bob does not relate to someone by the love relation.

Note that the above phrases and the following phrases are indeed phrases, not a set-
description (which the following resemble) nor a three-way relation (which the former
resemble, assuming Inform could even do multi-way relations).

Various functions provide lookup. These are especially handy when dealing with domains as

 The Inform 7 Programmer's Manual pg 31

large as text or numbers. Unfortunately, the compiler cannot check them at compile-time.
Runtime type errors result if arguments are swapped.

a Y which X relates to by R [for various-to-one or one-to-one]
a X which relates to Y by R [for one-to-various or one-to-one]

list of Ys which X relates to by R [for various and equivalence]
list of Xs which relate to Y by R [for various and equivalence]

[Warning: the above two are new and very buggy.]

list of Xs which R relates [for finding everything on the left hand side of
relation R]

list of Ys which R relates to [for finding everything on the right hand side of
relation R]

Pathfinding uses relations.

let X be the number of steps via the acts with relation from Kevin Bacon to Jodie
Foster;
let S be the next step via the acts with relation from Christopher Walken to Kevin
Bacon;

And of course, relations are integral to set-descriptions. Since set-descriptions can be
parameter types in functions, procedures, rules, and understand tokens, and be a domain
description in repeat loops and now every assignment statements, as well as passed-in and
used in their own right to phrases like filter, they are the secret sauce which COBOL and
Applescript lack.

repeat with countrymen running through every resourceful not antagonistic person
who trusts the player who is friends with a person (called the shill) who owns a
thing (called riches):

say "Hi [countrymen]. [Shill] said you'd lend me your [riches]."

In the above description, each subordinate phrase applies to the main noun -- person, in this
case -- not to the nouns listed in other subordinate phrases -- such as player, thing, or the
second person. (Asking "who is friends with a person" is a way of asking who has friends.)
We cannot insert commas or conjunctions ("and").

pg 32

Rules of Thumb

Because interactive fictions are single-author artworks rather than team-designed workhorses,
novelty and ease of modification trump safety and scalability. As a result, a partially rule-
based paradigm was chosen. Where the procedural paradigm triggers imperative code blocks
by invoking that code's given name (the name-plus-code construction is called a procedure or
function), the rule-based paradigm triggers imperative code blocks by attaching situational
information to it. The situational condition is called the preamble, and the preamble-plus-
code construction is called a rule.

In other words, a rule encapsulates when its code executes. For a procedure, the information
about when it executes is spread diffusely over the source code: wherever its name appears.
Rules typically don't need names because rules already know when they execute. They
needn't be told so by other code. (Rules can be named, as the following example shows, and
we'll soon see some reasons for doing so.)

A carry out rule for someone playful (called the prankster) which is friends with the
player inserting a favorite something into something worn when the time of day is
before the deadline during the opening scene (this is the my fairly long rule):

now the prankster annoys the player.

We have already dissected two rules so far in this guide, one in the nutshell chapter and one in
the firehose chapter, so let's move a little faster through this one. Carry out would be the
rulebook name, except that check, carry out, and report are actually each multiple rulebooks,
one set for each action. So the rulebook in use here might be named carry out inserting it
into. A and rule for are just syntactic sugar, and ignored by the compiler. The first parameter,
the performer, must match the set-description someone playful which is friends with the
player, and if so, the variable prankster captures. The noun will hold what matched a favorite
thing while the second noun will hold what matched something worn. The when condition
must be satisfied and a scene, the opening scene, must be currently in progress. We also name
this rule my fairly long rule, so further work may be done on this rule, such as temporarily
ignoring it at run-time via an extension, or placing constraints about its placement in its
rulebook vis-a-vis the other rules in it. The colon begins the imperative code block, and the
period ends the imperative code block. In short, the rule defines in what situation that the
player will be annoyed by someone.

In Prolog the rule would be written the other way around: The prankster annoys the player if-
and-only-if the action is the inserting it into action, and the actor is a person, and the actor is
playful, and the actor is friends with the player, and the noun is a thing, and the noun is a
favorite, and... and so on, in its verbose, obtuse, punctuation-filled way. Neither COBOL nor
Applescript are even that sophisticated. Indeed, one of the better analogs for Inform's rules
are the rules of Perl 6, even though Perl's rules are intended primarily for text strings and
grammar.

A few short examples of rule preambles follow. The latter three have the imperative block
included as well.

 The Inform 7 Programmer's Manual pg 33

A persuasion rule:
Persuasion: [an identical preamble to the above]
Every turn:
Every turn during the collapsing bridge scene:
Report someone burning something:
Instead of burning something held (this is the safety first rule): say "No, you might
burn yourself!"
Carry out an actor helping someone: now the noun befriends the actor. [an actor
means anyone; an is required]
Report tattooing: say "You go to work on [the second noun]'s [the limb understood]."

Unlike Prolog's never-ending sea of rules, Inform groups its rules into rulebooks. When a
rulebook is invoked, only that rulebook's rules are considered. The only required part of a
rule's header is the rulebook to which it belongs, though additional clauses are frequently
attached using during (for scenes), when / while (for if conditions), and a sole action
description (such as someone cutting something) immediately following the rulebook name.
This allows rulebooks to encapsulate smart, mutable behavior, similar to objects, but behavior
here is paramount, not a data instantiation. It could be said that objects implement nouns
while rulebooks implement verbs.

In source code, a rulebook's rules are rarely found together or in any particular order. They
can be scattered all over the source code, sprinkled throughout extensions, etc. An author is
free to group his rules however he wishes, such as by the narrative scene or geographical area
in which they're used, or by the rulebook to which they belong, or, yes, by the object(s) to
which they apply.

There are a few cases where naming a rule is useful, but these are usually in addition to the
header, not in spite of it. One is in debugging output: the RULES and RULES ALL testing
commands list the names of rules as they execute, or are considering execution, respectively.
Two is the ability to put the rule into a rule variable or passing the rule to a phrase. Three,
rarely, is imperatively invoking a particular rule. Four, especially for extension authors, is so
other rules may be listed before, after, or instead of the named rule at compile time. Finally is
the sake of documentation, primarily the index.

The block sleeping rule is not listed in any rulebook.
My magic hand rule is listed instead of the can't take distant objects rule in the check
taking rulebook.
The landlubbers can't walk right rule is listed first in the check going rules.
This is the my foobar rule: say “Someone please invoke me imperatively or list me
instead of another rule!”

But rules aren't functions. The latter example names a rule but gives it no preamble and no
containing rulebook. Unless my foobar rule is itself used in a line like the preceding two, or
is directly invoked with follow, it's dead code. The named but preamble-less rule implies we
are thinking too procedurally. Whatever invokes that rule is itself invoked at a particular time
under particular circumstances, so those circumstances should be in the preamble. Even if the
rule is invoked from multiple places, at least one place can use the preamble.

Strictly speaking, a rule accepts only one parameter, as defined by its rulebook, while all else

pg 34

in the rule's preamble comes from global variables – the world-state. (Even more strictly: at
the Inform 6 level, the parameter itself is actually in the global variable parameter_object and
rules become functions taking zero parameters.) However, the default type of a rulebook is a
description of actions, which itself accepts at most three noun parameters, each of which
could be a set-description. Since most of the commonest rulebooks do this, rules seem to
have a higher arity than they really do. Furthermore, a rule can optionally return one value,
via rule succeeds with result, the type of which is defined by its rulebook. All of the standard
rulebooks produce nothing, which further muddies the true nature of rules: as a kind of
codec, filter, or transformation which accepts the world-state in a particular state, possibly
prints something, and possibly changes the world-state as it finishes.

So to make a long story short: when a rulebook is K based, then rules belonging to it are
written rulebook-name instance-of-K, and even then the instance is optional.

Snark is a text based rulebook.
Snark “your mother was a hamster”: [...]
Snark “silly English k-nigget” during the siege of the French castle: [...]
Last snark: […]
The last snark rule: [...]

Spell out is a number based rulebook.
Spell out 15: [...]
Spell out:
Spell out 2 during relationship counseling: […]

Juggle is an object based rulebook.
Juggle the hamster: […]
Juggle an animal when PETA is not in the location: […]
The first juggle something (called the whatsit) when the player does not carry the

whatsit: [...]

Ms Manners approves is a rulebook. [basis is missing, so a description of actions it
shall be]

Ms Manners approves someone nice wearing something nice: […]

So let's examine rulebooks now, as they drive what a rule can, should, and cannot do,
including defining the apparent syntax even if the grammar is identical in all cases.

 The Inform 7 Programmer's Manual pg 35

Rulebooks: White-box Paradigm

Like a function, a rulebook solves what task is given it. Unlike a function, a rulebook picks
and chooses which rules within itself to execute. It will execute its rules until one of them
produces a success or failure result, distinct from any (optional) returned value. In lieu of a
return statement, rules use one of the rule succeeds [with result X], rule fails, or make no
decision imperatives, the last of which tells the 'book to try the next rule for a result. If a rule
ends without one of these three imperatives, the default imperative -- usually make no
decision -- is invisibly added at the end of every rule. That default is set by the rulebook.

The pick a plan rules are a rulebook.
The pick a plan rules have default outcome success.
[Or failure, or no outcome]
A pick a plan rule: say "I always fail, regardless the rulebook's default."; rule fails.
A pick a plan rule: say "I can never make up my mind so one of my peers will now
execute."; make no decision.
A pick a plan rule: say "I exhibit the default behavior for the rulebook."
A pick a plan rule: say "I'm always a winner."; rule succeeds.

A rulebook can take up to one parameter (including one whole action-description) and
produce one return value. A rulebook is invoked in one of several ways, mainly depending on
whether it takes a parameter and whether it produces a value. These phrases are 1) follow
(rulebook); 2) follow (rulebook) for (value); 3) the (value) produced by (rulebook); and 4) the
(value) produced by (rulebook) for (value).

A snarky one-liner is a rule based rulebook producing text. [rulebook by itself is
action based producing nothing]

When play ends, say the text produced by snarky one-liner for the reason the action
failed.

Snarky one-liner for the shouldn't touch electrical wires rule:
rule succeeds with result “You ignored the No Trespassing sign? I'm...

shocked.”

Snarky one-liner for the shouldn't descend deep dark wells rule:
rule succeeds with result “Good news! You have a choice: drowning or

landing.”

The remaining ways all substitute follow for either abide by or anonymously abide by. Both
of these return immediately after their called rulebook returns. The only difference is the
latter not setting the rule variable the reason the action failed to itself, becoming a silent
middle-man. Finally, rule succeeded and rule failed, the past tense versions of rule succeeds
and rule fails, are used in if statements to see if their present tense counterparts ended the
recently called rulebook. This information is stored just above the current stack pointer, so
calling any functions – including things which become functions in Inform 6, such as set-
descriptions – will clobber them.

pg 36

Check planning:
follow the pick a plan rules;
if the rule succeeded:

say "Rulebook succeeded.";
otherwise if the rule failed:

say "I've no plans because of [the reason the action failed]." instead;
otherwise:

say “Not a single applicable rule could make up its mind.”

Check planning (this is the choose-a-plan rule):
abide by the pick a plan rules;
say "This only prints if the pick a plan rule make no decision. But if it did
succeed or fail, abide by returns, setting the reason the action failed to this
choose-a-plan rule."

Check planning (this is the choose-a-plan rule):
anonymously abide by the pick a plan rules;
say "As above, but the reason the action failed will still be set to a rule in the
pick a plan rulebook even upon success and failure. This choose-a-plan rule is
a silent middle-man."

One way to think of rulebooks is as callbacks. More restricted languages, especially C when
talking to an operating system's API, use what are called callbacks to “insert” user-written
code into an operating system or library. Typically, callbacks are a bit arcane. C is notorious
for tangling pointers like spaghetti, so pointers-to-functions – which is what callbacks are –
can be a recipe for cyanide. But Inform's problem domain of iconoclastic games, which
thrive at least in part on novelty, places heavy demands on the flexibility of any standard
library. Callbacks are the norm, not the exception. Whence comes rulebooks: “open” spaces
where rules may be inserted and/or swapped out. So instead of code resembling this:

The callback rules are a rulebook. [usually empty]

To foobar:
ponder foo;
follow the callback rules;
mull over bar.

... the pattern becomes this:

The foobar rules are a rulebook.
Foobar rule (this is the pre-callback work rule): ponder foo.
Foobar rule (this is the post-callback work rule): mull over bar.

And now client code may insert code in a variety of places, even replacing the imperative
sections if desired.

To further strengthen the tie between rulebooks, functions, and natural language, rulebooks
may have “named outcomes”. These are a set of imperative phrases and a set of named values

 The Inform 7 Programmer's Manual pg 37

which work in concert. The outcome identifier by itself is the imperative, which is syntactic
sugar for rule succeeds with result <corresponding named value>. The named value set each
have the word outcome appended (except when printing) and fill-in the variable the outcome
of the rulebook for use in the caller's code. Outcomes can be classified as success or failure as
well.

The audible rules have outcomes silent (failure), whispered (success), voiced (success
- the default), and deafening.

[...]; whispered. [synonymous with rule succeeds with result the whispered
outcome]

follow the audible rules;
if the outcome of the rulebook is not the silent outcome, say “You heard something
[outcome of the rulebook].”

Named outcomes are most useful for extensions and the standard library. Much as boolean
object properties are a pair of named values (like lit/unlit) belonging to an anonymous
property, rather than a named property (like isLighted) holding true or false, rulebooks can
provide easily remembered decision phrases for new, author-written rules.

Visibility when the player carries at least two lit candles: there is sufficient light.
Does the player mean taking the train: it is very likely. [“getting on” or “entering”
the train, perhaps]
For deciding whether all includes the kitchen sink: it does not.
For reaching inside a closed tiger cage: allow access. [foolish, but possible]

Rulebooks may also have local variables. Unlike let variables which end with the code block,
these remain in scope over all the rules of the 'book. Though we don't have a specific way of
initializing them like let does, we can use the rule ordinal first to put a particular rule at the
start of a rulebook. (Only first and last exist this way, and in cases of multiple rules using
them, only the final first or last rule actually is so, superseding the preferences of earlier rules
that use them.) Last rules are useful for providing a fallback.

The pick a plan rulebook has a rule called the best plan.
The first pick a plan rule (this is the initialize plan rule): now the best plan is the little-
used do nothing rule.
The last pick a plan rule (this is the no idea rule): rule fails.

A few odds and ends before we close the chapter. Stop the action is synonymous with rule
fails, and continue the action is synonymous with make no decision. The word rules is
synonymous with rulebook in the source code, and is possibly the only case in the language
where a singular (rule) and its plural (rules) do not mean the same thing. (In practice, this
exception is fairly natural.) Finally, a rule variable can hold a rule and/or rulebook, but a
rulebook variable can only hold a rulebook.

pg 38

Events are Actions

In interactive fiction, the player controls the protagonist, and typed commands translate into
actions within the fictional universe. Protagonist actions like looking, examining, or burning
have rulebooks to deal with those events. Specifically, three rulebooks comprise an action: its
check rulebook ensures the action can proceed; its carry out rulebook updates game state; and
its report rulebook narrates the result. The other rulebooks that hinge on an action, such as
instead, these three are created anew for each action in the game. There isn't one check
rulebook; there are many, one for each action. This is done partly for performance reasons,
and partly for sanity reasons: to avoid a “sea of rules”.

Check taking something held: say "You already have that." instead.
Carry out an actor taking something: now the actor carries the noun.
Report taking: say "Taken." instead.

Much of Inform programming is writing report rules for actions, though some game events
like every turn, printing the name, and when play begins are also popular. (Game events
usually comprise a single rulebook apiece unless they are activities, which we will see
shortly.)

Defining a new action is similar to a function prototype. The exact wording is an action is
required. Furthermore, at least one “parameter” must be given: whining is an action is
disallowed without some more information. However, Inform doesn't much care what that
information is: supplying a past participle is just as good as the applying arity and type
specification. Applying to nothing is assumed if it is dropped.

Donating is an action applying to one thing.
Discussing is an action applying to one topic.
Accusing it of is an action applying to one object and one visible object.
Tabulating is an action applying to one number and requiring light.
Scheduling is an action applying to one time.
Temporarily waiting is an action applying to one time.
Whining is an action applying to nothing.
Teleporting to is an action applying to one object. [room, to be specific]
Debugging some stuff is an action out of world applying to nothing.
Tattooing it of is an action applying to one limb and one thing, requiring light.
Weaving is an action with past participle woven, applying to one thing.

These each create the three rulebooks that will hold the implementation details. Because
actions implement an English verb that our player-character (or an NPC) will perform, verbs
have a maximum arity of three and a minimum arity of one. The subject, called the actor (or,
as a global, the person asked), is required so no mention is made. In the implementation, the
direct and indirect objects of a sentence are called the noun and then the second noun – but
only if they are objects. Otherwise, the variable is the number understood, the time
understood, the topic understood, etc.

The syntax for declaring actions is very special-case. The phrase requiring light refers to a

 The Inform 7 Programmer's Manual pg 39

worldsim precondition. The adjective visible places every object (such as intangible ideas and
rumors) in scope, and is completely unrelated to requiring light. The word thing (or things)
actually means any objects – we can't be more specific with person, for example. (However,
it does accept object as a synonym, oddly enough.) The phrase out of world is for system-
level actions, which skips a great deal of the worldsim's calculations. With past participle X
tells Inform to use that word in source code for the past participle (has woven for example)
instead of replacing the -ing suffix with an -ed suffix automatically. And finally, other types
such as topic, time, time period, number, and various units may each only be used once in an
action.

After an action is created, the action must be implemented with rules, and then the parser
must be pointed to it via Understand statements. If the parser is not pointed at it, an action can
still be invoked from the code, via try, try silently, and silently try. When tried silently, the
report rules are skipped entirely.

try Bob donating the jeans;
silently try donating the red Ferrari;
try Bob accusing the player of theft;
try teleporting to the tattoo parlor; [subject can be dropped when
"the player" performs the action]
try silently the current manager tattooing the back of the player;

For actions with two objects, at least one word (such as a preposition) is needed between the
parameters, and the word it is a placeholder for the first parameter. It tells Inform where the
first parameter goes, because actions with multi-part names like teleporting to it by way of
have too many choices otherwise.

Finally, an action invocation can be put into a variable of type stored action and invoked at a
later time. The phrase the action of must precede the invocation in order to capture it.

An abeyance is a stored action that varies.

[...]; now the abeyance is the action of Bob examining the player;
[...]; try the abeyance;
[...]; now abeyance is the action of the current manager firing the noun;

The parts of the stored action can be reached with syntax similar to object properties: the
actor part of, the action name part of, the noun part of, and the second noun part of. Stored
actions are easy to create when only the nouns vary: just use variables like the current
manager. But to assign to the action name part the extension Editable Stored Actions is
necessary. A built-in to decide function, the current action, returns the currently-executing
action as a stored action. (Syntax note: very occasionally, the compiler will have difficulty
parsing an invocation that has a NPC as a subject. In these cases, add the word trying before
the action: Bob trying examining the player.)

Processing a character's action is a multi-step process, not including parsing. Each step is its
own rulebook. And just to be clear, every action has its own check, carry out, and report
rulebook. The others are shared among all actions. The following outline shows the
rulebooks chronologically, indenting the NPC-only rulebooks.

pg 40

Setting Action Variables
Before

Persuasion
[NPCs only]

Instead [default outcome is failure, so only one rule will typically execute
before jumping to the end]

Check <action>
Unsuccessful Attempt By [only when Instead or

Check fails] [NPCs only]
Carry out <action>
After [default outcome is success, so only one rule will typically execute

before jumping to the end]
Report <action> [skipped if the action

was invoked with try silently]

Each rulebook has its task:

Check rulebooks catch situations which should prevent an action from occurring. It enforces
preconditions, essentially. If the check rules prevent the player from doing something, it is
responsible for narrating that result. So a typical check rule reads like, “if X, then say Y and
abort action.”

Carry out rulebooks simulate the action, updating any data and running any code necessary.
It should not print anything lest try silently won't live up to its name.

Carry out an actor jumping: now the actor is on the nearby platform. ["an actor"
applies to everyone]

Report rulebooks then narrate the result of the successful action. Usually the say statements
in a report rule should end with instead to prevent multiple report rules from running. The
action is already considered to have succeeded by this point, so the usual meaning of instead
as failure isn't significant.

Report someone jumping: say "You see [the actor] jump over." ["someone" applies to
any NPC]
Report jumping: say "You jump over." [subject-less means the player]

Persuasion decides, upon a player command like BOB, TAKE ROCK, whether Bob will do
as you ask him to. The default persuasion rule, written in Inform 6 and so omitted from the
Actions index, denies with “Bob has better things to do.”

Unsuccessful attempt by runs if Bob agreed to what was asked of him, but a check or instead
rule stopped him. It exists so the author may narrate failure better than the default, “Bob is
unable to do that.” Again, the default rule is written in Inform 6, so is omitted from the
Actions index.

Before happens between parsing and game reaction. It can also trigger on groups of actions.
It's useful for setting up variables or other miscellaneous situations before the action rules

 The Inform 7 Programmer's Manual pg 41

begin in earnest.

Instead is useful for blocking groups of actions. This is a favorite of most new authors, and
it's not hard to see why. It can apply to groups of actions or a single action, one-liner versions
can use the comma for great readability, it defaults to rule fails so writing a rule here can
handle an entire situation on its own if desired. Unfortunately, instead rules tend to get used
for everything, which is a bad coding practice because there are knock-on effects later. For
example, the system thinks every rule fails, so tensed conditions like if we have examined the
red book will fail, even though we have, in fact done so. The author's prose came from an
instead rule instead of a report rule.

Instead of Tiny jumping: say "Tiny is too overweight to jump. You all must find
another way to help him across."

After, when adorned with a condition or three, is useful for triggering cutscenes. It defaults to
rule succeeds, so the report rules aren't run afterward. Again, they tend to get used often for
the same reasons as instead.

Setting action variables should do as little as possible, and is rarely needed. It's intended to
initialize variables that are local to an action, as opposed to variables local to an individual
rulebook or rule, by pulling values from global variables and object properties, including the
parameters the actor, the noun and the second noun. When declaring an action-local variable,
an optional "matched as" parenthetical allows rules in the rest of this action's gauntlet to test
those variables similarly to how it tests on the actual parameters. It isn't a way to pass
additional parameters to a rule, only to check world-state readably. The standard going action
uses this to provide rule hooks like going to/from <a room>, going through <a door>, going
by <a vehicle>, etc.

Report going from the monkey village to the lost city's entrance by the hoverboard:
say "You sail into the clearing easily this time, bypassing all those nasty monkeys that
like to drop on top of you." instead.

The jumping action has an object called the obstacle (matched as "over"). [
Matched as must be a single word.]

Setting action variables for jumping: now the obstacle is the current blockage of the
location.
[This pulls data from a "current blockage" property of a room, specifically, the room
the player's currently in.]

Instead of Stevie Burns jumping: say "Even little Stevie hops over [the obstacle]."
[Jumping takes no parameters beyond the performing actor]

Instead of Stevie Burns jumping over a fiery fallen beam: say "'Help!' says Stevie. You
suddenly recall him telling you about the time his house burned down." [We can
now test on the local variable with an "over" phrase.]

Because the before, after, and instead rulebooks are shared among all actions, they may apply
to entire categories of actions. A named group of actions is called a kind of action, and they

pg 42

have no special declaration syntax beyond the word is sitting between the action's name and
the kind-of-action's name. This encourages all manner of nouns, adjectives, and adverbs to
name a kind-of-action, but some read better than others when used in rule headers. In all
cases, an action must be defined before attempting to classify it.

Whining is pointless behavior. [“pointless behavior” is now a
kind of action]
Temporarily waiting is pointless behavior.
Discussing is conversation.
Accusing it of is conversation.
Accusing it of is drama.
Teleporting to is drama.
Tabulating is acting like a frickin' accountant.
Scheduling is acting like a frickin' accountant.

Kinds of actions can then be used in rule preambles. In the following examples, remember
than when and during begin additional clauses that check global variables and whatnot.

After pointless behavior: say "But you still feel unfulfilled."
Before conversation when the current interlocutor is not here, now the current
interlocutor is a random person here.
Instead of drama, say "(Now is the time to lay low!)"
Instead of acting like a frickin' accountant during the collapsing bridge scene, say
"You calculate (correctly) that you're about to become a victim of natural selection."

Any rulebook that can accept a kind-of-action can accept an explicit list of actions as well.
Let's then call that list Feature #1, because of the many variations on it. There is a special
kind-of-action, the noun phrase doing something/anything, that matches all actions. (Feature
#2). Optionally, it may [#3] be followed by an except or other than clause that lists actions.
Then, optionally, we may [4] tack on a set-description to further constrain the rule. (The set-
description can [5] be preceded with with or to if we wish because it frequently improves
readability.) And of course, we may [6] always add other conditions with when and during,
such as the in the presence of <person> boolean function.

Before an actor discussing [4] a spiffy thing [6] when in the presence of Mr
Blackheart: [...].

Instead of [2] doing anything [3] except waiting [6] when the player is paralyzed, say
"(Uhh... can't... move...)"

Instead of someone [2] doing anything [3] except taking, dropping, or burning [5] with
[4] something incriminating, say "[The actor] says, 'No, I must get rid of [the noun]!'"

After [1] examining, looking under, or searching [4] anything owned by Mr Blackheart
[6] during a scene needing tension: say "Suddenly, Blackheart re-enters the room.
'What are you doing.' It wasn't a question."

Just to be clear, doing something is a single identifier. Doing is not an action, and its
following something is not a set-description parameter. But something is a set-description

 The Inform 7 Programmer's Manual pg 43

elsewhere, as in examining something or accusing something of something.

There's six caveats to know. One, when using doing something, we must remember that
looking is what primarily prints text when we enter a place – or re-prints it when we load the
game, etc. – so we frequently will want to allow it. Two, when using doing something
to/with/-- something, actions of low arity like sleeping and waiting won't be caught by it,
because they never apply to/with something. Three, the docs don't cover any syntax for
constraints on the second noun, but a when clause can be appended. Four, when explicitly
listing several actions together, they must check the same arity. (So we can't combine
sleeping with examining something, but we can combine sleeping and examining. The arity
of the check, not of the action, is important.) Five, but we can combine them using a kind of
action (see immediately below). And six, in all cases, the subject of the actions is kept
completely separate from the rest of the action-description. Consider it already processed by
the time the verb is reached.

Examining something is acting like a klutz. [not "an actor examining something"]
Dropping someone is acting like a klutz. [notice the "someone"]
Looking is acting like a klutz. [arity of the check is lesser than

the other two]

Before someone acting like a klutz: [...]. [works for any NPC examining a Thing,
dropping a Person, or Looking]

pg 44

Understanding Our Player, Our Parser

The player's parser is a fairly simplistic one, little changed over a decade of use, but it makes
heavy use of callbacks for some surprising extensibility. These parser callbacks are called
topics (meaning, they are of type Topic). Topics are simplistic regexes in the shape of a
boolean function, and if they match, they "return" what object, unit, action, or value they find
by setting global variables. A given topic must "return" only one particular type; more on that
in a moment. We use Understand sentences to add these topics to the pre-existing list of other
topics that the parser runs down. Here are some examples of using Understand to connect
topics with actions:

Understand "whine" as whining.
Understand "donate [something]" as donating.
Understand "give away [something]" as donating. [We're making a

synonym here.]
Understand "discuss [text]" or "talk about [text]" as discussing. [Ditto, but as one

topic not two.]
Understand "tabulate [a number]" as tabulating.
Understand "answer [truth state]" as answering.
Understand "schedule [a time]" as scheduling.
Understand "wait for [a time period]" as temporarily waiting.
Understand "teleport to/-- [any room]" as teleporting to. [The altercation slash

can't be used on the first word]
Understand "accuse [someone] of committing/-- [any thing]" as accusing it of.
Understand "[any thing] committed by/via [someone]" as accusing it of (with nouns

reversed).
Understand "wear [something preferably held]" as wearing.
Understand "put [other things] in/inside/into [something]" as inserting it into.
Understand "deposit [something] in/into [an open container]" as inserting it into.
Understand "go to [any adjacent visited room]" as going by name.
Understand "tattoo [limb] of [someone]" or "tattoo [specific limb] of [someone]" as

tattooing it of.

The whole text between understand and as is a topic, and the text in the square brackets is yet
another topic called by the larger topic. The called topics start their parsing where the calling
topic left off, trying to decide if the words that follow match itself.

The topic any thing – as opposed to thing or a thing or something – ignores the limitations of
scope and will match any valid object found in the whole game. The word any in general
works like this, and must be echoed in the action definition by the word visible. Other topics
are intended for a particular type – time, number, a particular unit, named values like limb,
undigested text which actions reference by applying to one topic, etc. We may also use set-
descriptions here: an open container, any adjacent visited room, something related by
reversed containment, and so on.

Understand can also expose other parts of our games to our players: property adjectives,
synonyms for object names, and even other topics.

 The Inform 7 Programmer's Manual pg 45

Understand "dog" as Rover.
Understand "birds" and "ruddy ducks" as the plural of duck.
Understand "upper [limb]" or "lower [limb]" as "[specific limb]". [this won't capture
the words Upper or Lower, but allows the player to use them]
Understand "beneath/under/by/near/beside/alongside/against" or "next to" or "in front
of" as "[nearby]". [this is a convenience for the programmer only]

Any single topic can only return one specific type of something.

Understand "colour [a colour]" or "[something]" as "[tint]". [ERROR: is this Topic's
return type color or thing?]

A pot is a kind of thing. A pot can be broken or unbroken.
Understand the unbroken property as referring to the pot. [or, "...the broken

property..."]
Understand "shattered" or "cracked" or "smashed" as broken.
Understand "pristine" as unbroken.

Understand the broken property as describing a flowerpot. [describing disallows
"take broken"; player must provide the noun: "taken broken pot"]

We can understand kinds (classes) which will at least narrow down the player's possible
referent.

Understand "machine" as a device.
Understand "bottle of [something related by containment]" as a bottle.

If conditions can be attached to any understand statement, so the parser will ignore the line if
its condition isn't met.

Understand "rouge" as red when the make-up set is visible.
Understand "Rover" as Rover The Dog when the player knows-about Rover.
Understand "your" as a thing when the person asked has the item described.

But remember that this happens during parsing of the player's command, so the condition
can't always refer to information within the command itself, such as the noun or the second
noun. In the case of the person asked, it works for FRODO, GIVE ME YOUR RING because
Frodo has been parsed already, but will likely fail if “your” is the first word of the command.

If we just want a simple reply with no processing, there's a shorthand.

Understand "xyzzy" as a mistake ("Ah, I see you're an old hand at this.").
Understand "xyzzy" as a mistake ("The machine doesn't seem to have a button with
that label on it.") when in the teleportation chamber.

Mistakes can use the [text] token but little else. They can use say-phrases in what they print,
so it is possible to do some simple codework from them. Mistake lines are parsed before non-
mistake lines, because they're intended to cover exceptions to grammar or one-off, out-of-

pg 46

game remarks by the player, rather than entire categories of input.

Finally, a distinction in the time type that understand makes but the rest of the compiler does
not. The time datatype comes in two flavors, instants and durations. Three and a half hours
would be a duration, while 3:30 pm is an instant, a specific point on the timeline. Internally,
both are stored as the number of elapsed minutes since 4 am, but actions need to know which
flavor the player types in. So, only understand assertions distinguish between, [time], an
instant, and [time period], a duration. Math is straightforward once after parsing: adding or
subtracting a duration produces whichever it's being combined with, while subtracting two
instants produces a duration. But adding two instants is nonsense: what could 9:38 pm plus
4:47 am possibly be?

Understand "wait until [a time]" as waiting until. [wait until a moment,
such as 1 pm]
Understand "wait for [a time period]" as waiting for. [wait for a duration, such
as an hour]

 The Inform 7 Programmer's Manual pg 47

Arrays Have Been Tabled

Inform is not a language of computation. It is a language designed to hold secrets for the
player to discover. So its two-dimensional arrays – tables – are primarily intended for a single,
occasional lookup. Tables are statically-allocated like everything else, and the words "row"
and "column" are used in lieu of (x,y) coordinates.

Here's an example table from the docs:

Table 2.1 - Selected Elements
Element (some text) Symbol (some text) Atomic number (a

number)
Atomic weight (a
number)

"Hydrogen" "H" 1 1
"Iron" "Fe" 26 56
"Zinc" "Zn" 30 65
"Uranium" "U" 92 238

Or, alternately:

Table of Selected Elements
Element Symbol Atomic number Atomic weight
text text number number
"Hydrogen" "H" 1 1
"Iron" "Fe" 26 56

A blank line and the keyword table begin the whole affair. At least one tab character is
required to end a column and start the next. Multiple tabs and spaces are OK. The first tab
character Inform comes across melds together all whitespace surrounding it. Type
information can either be left off – Inform will deduce it mostly correctly – or can be given in
the two styles shown. Both styles have problems. The first, "inline" style only allows object
for objects, not a particular class. The in-row style allows specific class names, but introduces
a bug – row #1 will be a blank row that doesn't correctly flag itself as blank. This is because
we can leave individual entries blank, which would need the type explicitly stated.

Table of Energy Proponents
Proponent Fuel Danger
Bob Hydrogen a number
Phoebe Wind --
-- Geothermal --
Jean Nuclear 10
with 4 blank rows.

A blank entry is denoted by the – double-dash. The last line (with X blank rows) statically
allocates some extra space. A character's responses to the player's inquiries on various topics
has special syntax, a column entitled topic whose type will also be topic. Remember that
topics are simple regexes, so they cannot be printed.

pg 48

Table of NPC Responses
topic answer
"hi/hello" "He says, 'Well hello

there!'"
"bye/goodbye" "'Take care,' he answers."

There's several phrases to work with tables, but it's still one of the more cumbersome parts of
the language. This is because we must choose a particular row to work with each (column
name) entry as if they were each a standalone variable. We can't pass a chosen row to another
function. We can't choose two rows simultaneously, either in the same table or in different
tables. We can't copy rows to other rows. Finally, we can't create N-dimensional arrays
except by creating a column of type table name and the creation of a lot of statically-allocated
sub-tables by hand!

But knowing this, the phrases used for tables is fairly self-explanatory. The following are all
imperative procedures.

blank out (table entry);
blank out the whole row;
blank out the whole (column) of (table);
blank out the whole of (table);

if (value) is (a column) listed in (table),
if there is no (column) entry,
if there is (a column) corresponding to (a column) of (value) in (table),
if there is (a column) in row (number) of (table),

choose a blank row in (table);
choose row (number) in (table);
choose row with (a column) of (value) in (table);

sort (table) in reverse (column) order;
sort (table) in random order;

These are functions.

the number of blank rows in (table)
the number of filled rows in (table)
the (column) corresponding to (a column) of (value) in (table)
the (column) in row (number) of (table)

And these are used in rule preambles, working somewhat like a set-description. Tables and
topics are used together a lot, because it frequently happens a character has a whole array of
things to say in response to various subjects. And the default types of the asking it about
action are person and topic, respectively.

After taking (a column) listed in (table):
After asking someone about a topic listed in (table):

 The Inform 7 Programmer's Manual pg 49

One concession to ease of use is that its sort routine is stable. Meaning, if multiple rows have
the same value in the column we sort on, then their order vis-a-vis each other will not change.

A couple of features were added later to ease how tables and extensions interact. First is the
(continued) parenthetical. If an extension creates a table, a game can append extra rows to it.
Note that the order is important – a table section with (continued) must follow the table
section without.

Table of NPC Responses (continued)
topic answer
"thank/thanks you/--" "'You're very welcome.'"

The other feature is (amended) which allows the game to replace the pre-existing rows in an
extension's table. Again, the amended section must come after the original, so order is
important. Inform knows which rows are and aren't amended by looking at the left-most
column(s) and matching them up. Generally, only simple values can be matched in this way.
So the ordering of our columns actually matters as well, to the extension writer.

Table of NPC Responses (amended)
topic answer
"hi/hello" "He says, 'Whaddaya

want?'"

Finally, when we use generic types, a K valued table column is the type of a typed column,
mimicking K valued property.

pg 50

Time for a Scene

The room class divides space into discrete places. Scenes divide an interactive fiction into
durations of time. Each scene is implemented as a boolean variable that is automatically set
and cleared by an asserted condition. Scenes happen only once, unless declared as recurring.

A lightsaber duel is a scene.
A lightsaber duel begins when the location of Luke is the location of Darth.
A lightsaber duel ends when Luke is too injured to continue or Darth is too injured to

continue.

A person can be too injured to continue. A person is rarely too injured to continue.

Rule headers and imperative code both can check to see if a scene is happening.

Every turn during a lightsaber duel, say "BWWAAUUAAAHH".

[...]; if a lightsaber duel is happening, [...]

Each scene provides two rules that execute when the scene begins and ends. These are just
hooks we may use or ignore.

When a lightsaber duel begins: now the command prompt is the battle command
prompt.

When a lightsaber duel ends: now the command prompt is the normal
command prompt.

Scenes are not objects, but may still have properties. Text floating out by itself after a scene
definition goes into its description property, which is automatically printed when the scene
begins.

The train leaves is a scene. “All aboard!”
A scene can be dramatic or dull. The train leaves is dramatic.
A scene has a person called its viewpoint character.

We can write set-descriptions about scenes as well.

Every turn during a dull scene: [...].

[...]; if a thrilling scene is happening, [...]

When a thrilling scene begins: […].

We can ask at what time, or how long ago, a scene began or ended with the time since (scene)
began, the time since (scene) ended, the time when (scene) began, and the time when (scene)
ended. Extensions provide further phrases.

 The Inform 7 Programmer's Manual pg 51

Implementation-wise, scenes are just an example of named values, which follow. But because
this is interactive fiction, scenes receive more syntax support from the language, as they
should.

When the denouement ends, end the story finally.

pg 52

Named Values Everywhere

Named values are a type, similar to time or number but finite in the number of instances.
Inform uses named values everywhere. Scenes, rulebook outcomes, even a boolean object
property is a named value of two values. We explicitly create new named values as a kind of
value.

A limb is a kind of value. The limbs are left leg, left arm, right leg, right arm, the
neck, and the back.
A tattoo is a kind of value. Some tattoos are mom, barbed wire, wings, a kanji, a
pseudo-photograph, and some obscure symbol. Some tattoos are celtic knotwork and
a tribal something-or-other.

Named values can have spaces in their names, but they cannot have their names abbreviated
like objects can. Inform generally allows almost any word to be part of a named value, but be
warned, if you put words like "when" or "is" in a named value, it may create compilation
problems when used in other places. The articles used in defining a kind of value are usually
ignored, but it is good practice to ensure both the singular (a tattoo) and plural (some tattoos)
versions of the kind of value are used in order to prevent mystifying compiler errors later on.
Finally, not all of a named value's names need be defined in a single sentence.

Named values can be used almost anywhere an object can. Plus there's a few phrases with
named values can used but objects can't, since multiple object instances don't have any sort of
ordering to them. In the following, the action tattooing, the relation is/are tattooed with, and
the named value tattoos are all distinct from one another.

now the offended body part is the limb after the left leg;
now the offended body part is the limb before the back;
now the offended body part is the first value of limb
now the offended body part is the last value of limb
now the drawn tattoo is a random tattoo between wings and celtic knotwork.
Definition: a limb is hurt if [...].
Tattooing is an action applying to one limb and one thing.
Understand "tattoo [limb] of [someone]" as tattooing.
Exposition relates various people to various tattoos. The verb to be tattooed with
implies the exposition relation.
Joan is tattooed with some obscure symbol.
repeat with place running through each limb:
A tattoo can be sleeved, stamped, or hidden. Kanji are hidden.
A tattoo has a topic called the conversation starter.

Tables can defined a slew of named values. If used with the above, this method of definition
must come first.

Tattoos are a kind of value. Some tattoos are defined by the table of designs.

Table of Designs

 The Inform 7 Programmer's Manual pg 53

tattoo topic
barbed wire "barbed/wire/tattoo"
wings "nice/angel/pretty"

Table of Designs (continued)
tattoo topic
Jean-Pierre 4-ever "who/was/jean/pierre"

Inform automatically creates some named values that correspond to other parts of the
language. For example, the containment relation is an example of the relations named value,
which corresponds to a built-in relation. This named value is passed into phrases such as the
pathfinding and lookup functions mentioned in the relations chapter. New relations would be
treated similarly: the teenage love relation. Likewise, action name is the named value
counterparts for actions: the looking action, the inserting it into action, etc. Other times, one
part of the language is little more than a named value.

pg 54

It's Not Just Text

Though it's probably obvious by now, text goes between double quotes. Within it, square
brackets denote a say-phrase (procedure call). Inform's print command is say, and it expands
to a series of print statements and function calls in the generated Inform 6. As a nod toward
the world of the printed word, a double quote within a string is written as an apostrophe, and
the apostrophe itself is the say-phrase [']. The say-phrase isn't needed in common words like
don't or can't. As a convenience feature, a string ending in a period, question mark, or
exclamation mark has an automatic line break appended. An extra space nullifies this
behavior. So, in order to print:

Rene Descartes said, "I think not!" and promptly disappeared.
So don't ever say that, 'k?

… we use:
say "Rene Descartes said, 'I think not!' and promptly disappeared.[line break]So don't

ever say that, [']k?";

Variables and objects in square brackets say their value or printed name, respectively. (The
latter invokes the printing the name activity we'll soon see.) Other useful text properties are
the initial appearance property, usually printed by the looking action, and the description
property, which is usually printed by the examining action when it's on objects, or by the
when (scene) begins rule for scenes. Some useful global text variables are the command
prompt, which is usually the > greater-than symbol, the left hand status line, which is usually
the name of the player's location, and the right hand status line, which typically holds the
score. Communicating with the outside world are the story title, the story author, the story
headline, the story genre, and the story description, which collectively create the “library
card” used by websites like IFDB and in the game's own banner text seen at game start.
Preview the library card in the contents tab of the index.

Inform was originally designed to make games with a very small memory footprint, so a
game's output text is compressed and language support for regexes is poor. The text type is
this compressed text. Indexed text is a later and still optional addition to the language.
Regexes operate only on the latter but can implicitly typecast the former. Both types use
double quotes identically, so constructions like the following are needed to avoid creating
plain text.

let T be indexed text;
let T be "Hello World";

Manipulating the player's inputted text is mediated through snippets, topics, and the phrases if
(snippet) includes (topic), if (snippet) matches (topic), the does not negated versions, cut
(snippet), and replace (snippet) with (text). A snippet is a pair of numbers, joined together
like fixed-point notation, that represent a range of words. "The 3 words starting at word #2"
would be the snippet 203. There are only three built-in snippet variables: the player's
command, the matched text, and the deviously-named the topic understood which is used in
actions applying to one topic.

 The Inform 7 Programmer's Manual pg 55

After reading a command:
if the player's command does not include "please/thanks", say "How rude!"
instead;
if the player's command includes "please/thanks", cut the matched text;
if the player's command matches "hi there", replace the matched text with
"hello";

Report asking Bob about “home/leaving”:
say “Bob rambles on about how only slackers think of [the topic understood]

so much.” instead.

Understand “bastard”, “rat/prissy bastard”, or “sir” as Bob.

Topics are regexes from a time when the term “regular expressions” was still mathematically
correct. They are written within double-quotes and depend upon the invoking phrase to infer
the type. Their only operator is “or”, indicated by the / forward slash, or, in understand lines,
by commas and conjunctions when outside quotes. Topics are frequently used in a game's
conversation system because many subjects aren't physical objects which most standard
actions need manipulate, and regexes require less memory than objects. (Incidentally, this is
also why the object hierarchy lacks an idea or concept class.)

Indexed text is troublesome because Inform tries to remain statically-allocated, but the full
Perl-like regex system works on it. Typecast between snippets and indexed text like so.

let the command-to-be be indexed text;
let the command-to-be be the player's command;
[...];
change the text of the player's command to the command-to-be; [this is a

special-case syntax]

pg 56

Precisely One Spoon-unit Of Sugar

Units are user-defined numeric types with some nifty syntactic sugar, sugar that extends even
to our player. Generally in programming, numbers are numbers: the programmer must
remember one variable measures in pixels while another measures in picos, and to mix the
two makes bad medicine. But Inform allows us to define unique ways of writing the numbers
-- by wrapping identifiers and punctuation marks (the "preamble") around them. The
individual numbers ("parts") in the construction can be given names for later referencing.

Money is a kind of value. $19.99 specifies some money with parts dollars (without
leading zeros) and cents (optional, preamble optional).
My wallet is some money that varies. My wallet is usually $20.75.
A thing has some money called the price. The price of a thing is usually $5.
The price of Bob is $2.05.

say "[the dollars part of the price of Bob]";

We can only add and subtract units, assuming the units match. To allow multiplication and
division, we can specify what new unit is created. Note the re-use of the specify/specifies
verb.

A length is a kind of value. 10 m specifies a length.
An area is a kind of value. 10 sq m specifies an area.
A length times a length specifies an area.

We can always multiply and divide a unit by a plain number. Multiplying and dividing by one
is how we explicitly typecast between units and numbers. We can also define units that are
scaled versions of each other. Inform doesn't support floating point, but it can combine the
types into a fixed-point type this way.

1m specifies a length. 1cm specifies a length scaled down by 100.
1m specifies a length scaled at 100. [This has similar effect without defining
cm.]

Inform automatically creates a new Understand token from units. The player writes the unit
the same way we do.

Understand "donate [money]" as donating. Donating is an action applying to some
money.

Finally, we can re-use the implies statement from defining relations for an extra dose of sugar.

The verb to cost (it costs, they cost, it is costing) implies the price property.
The jeans cost $19.95.

Note that we didn't define a relation there, though it may look like it. But we could:

 The Inform 7 Programmer's Manual pg 57

Fanciness relates a thing (called X) to some money (called Y) when the price of X > Y.
The verb to be fancier than implies the fanciness relation.

let L be the list of things fancier than $2.50;
let B be the list of things fancier than the price of jeans;

The built-in type time is not a unit, but pretends to be. Time's parts – hours and minutes – are
calculated from a 4 AM minute-count, not stored as separate numbers as units are done.

Inform also supports dimensional analysis on units when used in equations. Mathematics is
the ultimate declarative language: it needn't compile to assembly. So Inform sets off its
declarative equations from the normal flow of code and prose. Variables are one to ten letters
long, and may be set right next to each other to represent multiplication. Whitespace is
insignificant. The types of the variables are listed afterward in a where line, always number
or a particular unit, and possibly a global variable or exact value.

Equation - Volume of a Cylinder
V=pir^2h

where V is a number, pi is 3, r is the radius, h is a number.

The radius is a number that varies.

The local variables can appear outside the equation, especially when we use the equation to
find that value.

let h be 15;
let V be given by the volume of a cylinder, where r is 5;

The values for all variables except one must be suppled by the time given by is invoked.
There's four ways to supply a value. One is as a constant, as we've done with pi. Two is by
global variable, as we've intended with radius. (Note the compiler won't ensure we've
initialized the global.) Three is by declaring and initializing the variable with let like any
local variable, as we've done with h. And finally is the where line itself, as we've done with
radius (where r is 5) and overridden the global. The answer will either go into the local we
declare with given by, as we've done with V, or into the global it is tied to, such as the
following which populates the global radius but leaves r undefined.

let r be given by the volume of a cylinder, where V is 25, and h is 2;

Note that the above knew to use the square root to find the radius, but we cannot specify the
square root in the equation ourselves. Besides parentheses, equations support addition,
subtraction, multiplication, division, and exponentiation directly, and for squares and cubes,
can rearrange terms to take the square root or cube root as appropriate. But we cannot
specify roots in equations ourselves, so we would have to code the quadratic equation
traditionally.

Even with those constraints, there are many equations that Inform cannot rearrange.
Polynomials are a fine example. And all math here is integer – Inform does not currently
support floating point. (Fixed point is supported, but only as part of a scaled unit.) The

pg 58

equations feature is not intended as a mathematical tool, but as a coding feature for
convenience and correctness. If we need to solve for multiple different variables from the
same formula, it is better coding practice to write the formula once as an equation than to
write multiple to-decide functions, one per variable.

Units have difficulty with aggregates such coordinates. For example, the following formula is
defined using all numbers, because even though the types of x and y are different, and y and b
are the same, Inform's dimensional analysis will not allow them to be combined.

Equation - Slope-Intercept Formula
y = mx + b

where y is a number, x is a number, m is a number, and b is a number.

 The Inform 7 Programmer's Manual pg 59

Backstage Activities

Actions are player-generated events. Activities are library-generated events. Typically they
print something that an author might want to customize for their work. Parsing, prose
generation, complex actions, and a few miscellaneous events to bookend the game comprise
the bulk of activities. It’s interesting that what events a library exposes is indicative of what
the tool considers, and has considered, important over the years.

Each activity is composed of three rulebooks, whose names begin with before, for, and after.
The default outcome of the for rulebooks is success, so only the most specific applicable rule
will fire. The other two run all applicable rules within themselves. We can test to see if an
activity in progress via while in the rule preamble. This allows us to vary narration of the
same object or event differently depending on context.

The optional word rule may begin a for rule as syntactic sugar, and the usual of, for, rule may
be inserted before the parameter. For activities with have articles in their name, such as
printing the name, those articles are required. An activity's name allows no leeway in its
wording.

Explanations of each activity, and its general category, follow.

Prose Generation. This may be a heavy label for what is essentially just outputting the
contents of text properties, but they are some of the most important library events in Inform.
The current contents of these rulebooks in a given work are listed in the “How Things are
Described” section within the Rules tab of the Index.

Printing the name of something. This prints the printed name property. As many times per
turn as this activity is called, it’s more efficient to put say-phrases in the printed name
property than create a rule that runs when every other object’s name needs be printed. Still, to
change the name for a set-description, or for unusually complicated situations, it is still one of
the most used activities in Inform.

Rule for printing the name of Joan when Joan has not managed the player: say
“important-looking woman”.

Printing the plural name of something. This prints the printed plural name property. This is
only used from within the following printing a number activity, right after said number is
printed.

Printing a number of something. Used for indistinguishable instances of a class, because a
list of “a coin, a coin, a coin” is pretty dull, and normal instances each have a distinct name of
their own. Skipped if there’s only one such in the location. The variable listing group size
holds the number, and is useful with the say-phrase in words. Calls the above printing the
plural name activity.

Listing contents of something. This very useful library event pretty-prints a list of objects
contained within the sole object passed to it, such as the player or the location. It’s used by

pg 60

taking inventory and for the you-can-also-see sentence of looking. Its before rules provide the
phrases group (set-description) together, group (set-description) together as (text), and group
(set-description) together giving articles, which ensures a multitude of instances appear next
to one another in the list by calling the following activity grouping together.

Grouping together something. Utilized by the above to wrap or replace the members of the
group with other text. A for rule here will override the text used in group (description)
together as (text), and is a good way to treat multiple distinct instances as if they were
indistinguishable instances (such as our coins example). The variable listing group size again
holds the number of group members. The passed-in parameter is only the first member of the
group, and is otherwise insignificant.

(The multiple activities belonging to looking are in their own section further down.)

Parsing Input. Doing a good job with these activities can make or break a game. The
contents of all these rulebooks are listed in the “How Commands are Understood” section of
the Rules tab of the Index.

Printing a parser error. A distressingly important activity, it allows narration of the nineteen
different parser errors Inform can throw, none of which are terribly informative for how the
player should re-factor his input. While extensions such as Default Messages and Custom
Library Messages can change the parser errors themselves, typically it is useful to vary the
errors based on situation and available information, to give the player much better, much more
specific feedback.

For printing a parser error when the latest parser error is I beg your pardon: try
looking.

Reading a command. Each of the three phases of this activity is useful. Before is useful for
initializing variables for the next turn. For rules can actually skip reading the player's
command, allowing us to insert text into the command buffer directly and use that instead, via
the special-case phrase change the text of the player's command to (indexed text). After rules
are useful for massaging the input before it is fed to the parser. Note that although Inform
supports regexes, they are slow, so use the following standard phrases if at all possible. The
forward slash denotes high-precedence altercation.

After reading a command when the player's command includes “please/thanks”, cut
the matched text.
After reading a command when the player's command matches “take a nap”, replace
the matched text with “nap”.
For reading a command when the command to retry is not “”:

change the text of the player's command to the command to retry;
now the command to retry is “”.

Clarifying the parser's choice of something. When the parser takes a guess at what the player
meant (via the does the player mean rulebook), it says so in a parenthetical like, “(your coat)”.
We can change this message, or for bleedingly obvious cases, censor it. The variable the item
described refers to the parameter.

 The Inform 7 Programmer's Manual pg 61

For clarifying the parser’s choice of your coat: do nothing.

Asking which do you mean. When the parser cannot guess which object was meant, usually
because the name the player used applies equally to either one and does the player mean was
no help, it ask, "Which X did you mean?" Though writing a for rule would be a major
undertaking, it's use may be in printing the name as a condition, while asking which do you
mean.

Supplying a missing noun. Sometimes a verb is used without a noun because the noun is
obvious in some way. For example, EAT when there's only one edible thing in the location.
By informing the grammar rules that a verb can be entered without the noun, this activity will
be called to assign something to the noun. If the noun is still nothing after the activity
finishes, then the normal parser error will result: “You must supply a noun.”

Understand “eat” as eating. [as opposed to “eat [something]”]
Rule for supplying a missing noun while eating: now the noun is a random edible
thing in the location.

Supplying a missing second noun. As above.

Deciding whether all includes. When the player enter TAKE ALL, it really shouldn't be every
object. The drapes, the sun, the kitchen sink, Bob – these should be excluded. By default,
other people, scenery, and fixed in place (i.e., nailed down) objects are immune to ALL, but
sometimes we wish to disallow other things. The imperatives it does and it does not may be
used instead of the usual.

Rule for deciding whether all includes something which frightens the player: it does
not.

Deciding the scope of something. Used with the phrases place (object) in scope; place
(object) in scope, but not its contents; and place the contents of (object) in scope. When the
visibility and accessibility rules miss an object, this hook is something of a hack. Generally,
only the after rules are used.

Deciding the concealed possessions of something. Normally, the parts and carried contents of
people, machines, etc. are plainly visible. But sometimes we wish the particular possession
of the person (or whatever) to be invisible.

For deciding the concealed possessions of the secret assassin when the particular
possession is the dagger: yes.

Taking. This action is the most common action to cause a change in world-state. In the text
adventure days, it was fashionable to simulate the physical world to such a degree that one
had to open doors before going through them, unlock doors before opening them, and taking a
nearby item before using it. As time went on, this level of fine detail lost its novelty value,
and nowadays most players are annoyed if their character doesn't have the sense to
automatically open a door before walking through it. Automatically taking a nearby object

pg 62

before eating or otherwise using it has been bugging players long enough that the library
provides for it.

Implicitly taking something. If the for rule fails, then TAKE won't automatically be done.
This rulebook is listed in the Index's Rules tab, at the bottom of “How Commands are
Understood.”

System level. These events bookend the game and are rarely needed. But they occur in
places that user-created code would be hard-pressed to get into had the library not specifically
exposed them, so it's just as well that they're offered.

Constructing the status line. We can already change its contents by assigning to the left hand
status line and the right hand status line, but it's sometimes useful to use shorter names up
there due to space constraints.

For printing the name of the fourth diagonal corridor of the sixth floor while
constructing the status line:

say “6th floor”

Printing the banner text. This prints the title, subtitle, author, and version information at the
opening of play. Messing with this is a quick route to making a game look amateurish. But
sometimes an after rule is tasteful.

Printing the player's obituary. Prints the “you have died” message followed by the score, if
any.

Amusing a victorious player. Prints text in response to the command AMUSING at the game
over prompt.

Starting the virtual machine. Multimedia or specific VM interpreters may need this early
event, but that's about it.

Looking. This slightly-recursive action does the most prose generation of anything in Inform.
In text adventures of old, looking was your primary vehicle for delivering important
information. Nowadays scenes can carry much of that weight, but the library still dedicates
much of itself to ensuring which closed containers are lit and which aren't, and what you can
see from multiple vantage points. Each level of recursion is called a locale and has two parts:
items with an initial appearance, each getting a paragraph to itself, and the nondescript items,
which are in a single paragraph together. When we stand on a stool inside a bear pit inside the
room, looking will articulate what's what at each level of recursion, starting with the
outermost and working its way inward. (A work's current rules for these activities are listed
in the “How Things are Described” section of the Rules tab of the Index.)

Looking uses two properties for bookkeeping: mentioned and marked for listing. Things are
initialized to not mentioned early in the process, and after printing an item's initial
appearance, or if the item was used in writing a paragraph about, the item is then mentioned.
After the interesting locale paragraphs rule finishes iterating, the leftover items still not

 The Inform 7 Programmer's Manual pg 63

mentioned are initialized to marked for listing, so the final listing nondescript items activity
can list them in a single paragraph.

Initial appearance, by the way, is set by the text that floats by itself after an item.

The worn-out tennis shoes are a wearable thing. “Your trusty tennies lounge by the
front door.”

The behavior is deep enough to require an illustrated callgraph of sorts. A rule doesn't have
the --> in front of it. Activity names are in bold. Parenthetical remarks provide information
about the rule's purpose or activity's parameters.

[the carry out looking rulebook]
-- room description heading rule (prints the room's printed name property)
-- room description body text rule (prints the room's description property)
-- room description paragraphs about objects rule (it doesn't really recurse, but iterates on
ever-smaller domains)
-----> [BEFORE Printing the Locale Description of the room, container, or supporter]
-----> -- initialise locale description rule (initializes objects to not mentioned)
-----> -- find notable locale objects rule
-----> -----> [Choosing Notable Locale Objects for the room, container, or supporter]
-----> -----> -- standard notable locale objects rule (uses set locale priority of (object) to 5 on
each object)
-----> [FOR Printing the Locale Description of the room, container, or supporter]
-----> -- interesting locale paragraphs rule (sorts objects in locale priority order)
-----> -----> [Printing a Locale Paragraph about the prop]
-----> -----> -- don't mention player's supporter in room descriptions rule (marks it mentioned)
-----> -----> -- don't mention scenery in room descriptions rule (marks it mentioned)
-----> -----> -- don't mention undescribed items in room descriptions rule (marks it mentioned)
-----> -----> -- set pronouns from items in room descriptions rule
-----> -----> -- offer items to writing a paragraph about rule
-----> -----> -----> [Writing a Paragraph About the prop] (empty; for author use)
-----> -----> -- use initial appearance in room descriptions rule (prints the initial appearance
property)
-----> -----> -- describe what's on scenery supporters in room descriptions rule (“On the
scenery-supporter is...”)
-----> -- you-can-also-see rule (initializes marked for listing and calls activity)
-----> -----> [Listing Nondescript Items for the prop] (says "[In/On the supporter/container]
you can [also] see...")
-----> -----> -----> [Printing Room Description Details of the prop] (but the item described
is the room)
-----> [AFTER Printing the Locale Description of the room, container, or supporter]
(empty)
-- check new arrival rule

pg 64

Printing the locale description of something. This is the big, overarching activity within the
carry out looking rule room description paragraphs about objects. If we stand on a stool, in a
bear pit, in the room, this iterates through those “locales”, from outside to inside, so it feels
like recursion without actually being so.

Choosing notable locale objects for something. This initializes each item's local priority to
five. In an after rule, we can set the locale priority of (object) to (number) to enforce a
particular ordering of the objects. One is high priority. The activity is called once per locale –
the parameter is the room (or whatever) – so a for rule on a room should set priorities on all
objects in it. A priority of zero is not mentioned.

Printing a locale paragraph about. Finally, it's time to start printing prose to the screen.
Well, not all objects deserve any mention whatsoever. The player is one of them – it is
undescribed. This activity will 1) filter out objects with the scenery and/or undescribed
properties, then 2) filter out the supporter the player is on (since it was mentioned in the room
heading), then 3) offers the remaining items to writing a paragraph about. If that activity had
nothing to say, then it continues by 4) printing the initial appearance property, if any, and then
5) if the object is a scenery supporter with non-scenery stuff on it, it will describe the
supporter and its contents.

Writing a paragraph about. Initially empty, this is intended for the author's use. It overrides
initial appearance. As is usual, say-phrases in properties execute faster than rules which must
be considered. This activity is called several times per LOOK.

Listing nondescript items of something. Items lacking initial appearance or a writing a
paragraph about rule will be marked for listing, then fall into here. This activity prints one
sentence, via the listing contents activity. This activity's line may begin with “On the
(supporter), you” or “In the (container), you” if the locale isn't a room.

Printing room description details of something. Some items' names are trailed by a
parenthetical filled only with properties like open, closed, or empty. This only occurs in the
you-can-also-see line of a room description. This activity allows changing these parenthetical
messages. (With the Default Messages extension, these are library messages 101 through
107.)

Darkness. Like bottomless pits in platformers, darkness has been one of the commonest
tropes in text adventures, stretching back to its earliest caving days. While in 2010 darkness
can be simulated with a single instead rule, the library has always supported it, and supports it
still. The following five activities each only print a message, any of which could be replaced
with extensions like Default Messages or Custom Library Messages. While these activities
might be useful if we create a game involving heavy use of light and dark – replacing the
default message with a say phrase that calls a rulebook would give the same effect – we can
otherwise ignore their existence. They take no parameters. The truth state variable the
darkness witnessed remembers if the player has ever been in the dark.

Printing the announcement of darkness. “It is now pitch dark in here!”

Printing the name of a dark room. “Darkness”

 The Inform 7 Programmer's Manual pg 65

Printing the description of a dark room. “It is pitch dark, and you can’t see a thing.”

Printing a refusal to act in the dark. “It is pitch dark, and you can’t see a thing.” The
visibility rulebook decides if this activity is called.

Printing the announcement of light. Performs try looking.

New Activities. Occasionally we wish to create an activity of our own. Extensions tend to
find this useful more often than game-specific code, but if some kind of complex interaction
is complicated enough, or is worthy of altering narration via while, it may warrant an activity.
An activity takes at most one parameter, of any type. Something must exist if it takes a
parameter, and on type must exist if the parameter type is not object.

Planning something is an activity on people.

Drama management something is an activity on scenes.

The name of the activity will always have before, after, or for in front of it, so name
accordingly. The for stage of an activity should, by default, have a single last rule which
provides the default behavior. Other for rules will always fall in front of the default, getting
first shot at handling the situation. Again, the words of, for, and rule may appear or not
between rulebook name and parameter description.

Last for planning for someone (called our thinker): say “[Our thinker] can't think of
anything to do.” instead.

Finally, the phrase carry out the (activity) with (parameter) invokes the activity. It must
appear somewhere in our code or our activity will never be used. The the is required.

Before drama management for the entire game, carry out the planning activity with
the player.

pg 66

Testing Commands

We have one testing command in the language itself:

Test me with " look / test foobar / wave ".
Test foobar with " look / take me / jump ".

This will execute the slash-separated list of runtime commands when the TEST runtime
command is issued. Me is the usual name for the top-level test script.

We have several run-time testing commands at our disposal.

SHOWME an object: Will list the current values of all the properties of that object, including
any relations it's involved in.

RULES: Will list the name of a rule before it executes.
RULES ALL: Will list the name of a rule before it considers execution.
RULES OFF: Turns off the mode.
ACTIONS / ACTIONS OFF: Will list when actions begin and end.
RELATIONS: Lists the current state of all relations.
SCENES / SCENES OFF: Lists the scenes currently happening, and will update us when one

begins or end.
TREE: Shows all instantiations, indented according to the containment relation.
TEST a test script: Runs the list of commands.
PURLOIN an object: Immediately places the object in the player's inventory, no questions

asked.
ABSTRACT object TO object: Similar to purloin, but gives the first object to the second

object, which is likely to be a container or some such.
GONEAR an object: Moves the player to the room which has the object.
RANDOM: Random number generator now predictable.
SHOWVERB: Shows I6-level information about a verb: synonyms, arguments, whether the

arguments are reversed for a particular line.
SCOPE: Show all objects currently in scope.
SCOPE object: Show the scope from the particular object.
TRACE a number: Shows very low-level parsing information. The number ranges from 1

(the default) to 6 (the most detailed).

The IDE has the skein -- which is a tree of commands of every playthrough we've done in the
IDE -- and the transcript -- which is a detail view of one path in the skein. It has the output
text from those commands. The transcript also has the bless button, so automated re-testing
of changes is possible.

 The Inform 7 Programmer's Manual pg 67

Times, Turns, and Tenses

Narratively, flags and counters are some of the most useful pure-coding constructs in
interactive fiction. Varying the prose on what has or hasn't been done before, or at all, has
been so important to the form (and cluttering source code for so long) that Inform counts and
flags many things automatically, providing the results to us in the form of specialized syntax.
Besides 1) the global time of day and turn count variables, Inform automatically tracks 2) how
long until a scheduled event will occur, with at rules, 3) how many times an action was
attempted, or a condition became true, with for the Nth time, 4) for how many turns in a row a
condition stayed true or an action was attempted, with for N turns, 5) if an action has ever
succeeded on an object or a condition has ever become true, via the perfect tenses, and 6) the
world-state as it was on the previous turn, via the past tenses. Once learned, these become
major tools in the construction of a quality game and very readable source.

1. The variables the time of day and the turn count hold the current value for each. We test
these same as any variable.

Instead of going when the time of day is before 5 pm, say “It ain't quittin' time yet.”
After looking when the turn count is one, say “And so your adventure begins.”

2. We can schedule an event (a rule) to fire in the future. Method one is hard-coding an in-
game time. It fires only once.

At 12:00 PM: say "The lunch bell rings!"

Method two is more flexible because it can be re-scheduled. First, we name the event. In the
following example, the watch will beep is a rule, which lives in an opaque, unnamed pseudo-
rulebook only while it is scheduled. (Else, it's unlisted.)

At the time when the watch will beep: say "Your Casio beeps at you urgently."

Then we schedule it imperatively. The at phrase takes type time, while in takes a number of
either turns or minutes. Note that turn/turns is part of the phrase, while minutes is part of the
time type. A turn is an action, and is related to time by the ratio of one turn to one minute,
though extensions such as Phrases For Adaptive Pacing can modify this.

Carry out waiting until: the watch will beep at the time understood.
Carry out waiting for: the watch will beep in the time understood from
now.
Carry out pushing the watch: the watch will beep in six minutes from now.
Carry out pushing the watch: the watch will beep in six turns from now.

An event can safely re-schedule itself.

When play begins, the alarm clock goes off at 6:30 am.

At the time when the alarm clock goes off:

pg 68

say "Your alarm clock wakes you up.";
the alarm clock goes off at 6:30 am.

3. Inform counts how many times an action was attempted which our rule preambles query
like the following.

Before taking the candle once: say "Hey, it's a candle."
Before taking the candle twice: say "You guess you'll need that candle again after all."
Before taking the candle for the third time: say "Your life seems tied to this candle."
Before taking the candle for at least 4 times: say "Sigh."

These action amendments count both successful and unsuccessful attempts, so we should
confine them to rules guaranteed for consideration every turn: before and every turn, and
early in persuasion and instead. Any later than that and we must take precaution that the rule
isn't pre-empted, missing the chance to even see the Nth attempt.

Check burning when the candle is unlit once: say “You'll need to light the candle
first.” instead.
Check burning when the candle is unlit twice: say “Again, your source of fire needs be
lit first.” instead.
Check burning when the candle is unlit for at least the third time: say “The candle is
out again.” instead.

After burning the candle twice: say "If a check rule blocks the second attempt, this
after rule never fires. But even if this rule does fire, it isn't necessarily narrating the
second time the candle was successfully lit up. The first attempt may have failed, so
this rule would be firing on the first successful attempt."

The for the Nth time amendment can also be added to relations and conditions to check how
many times they become true.

Every turn when the candle is lit for at least the third time: say "The oft-used
candlewick lights easily."
Every turn when the player carries all the gear for the third time, say “How did I get
stuck being the pack mule?”

4. Inform also counts for how many turns [in a row] something has remained true. The
syntax uses the word turns rather that times for this, as it's a measure of duration rather than a
discrete tally of occurrences. If used on actions, it means that the action was done multiple
times in a row. Indeed, to keep the distinction clear, it's helpful to mentally amend the words
in a row to any for X turns amendment.

Every turn when the player does not carry the sprite for at least 3 turns: say "The
sprite sings a lonely song."
Every turn when the candle is lit for five turns, say “Your candle burns on.”
Every turn when the player carries all the gear for ten turns, say “Isn't it someone
else's turn to carry this stuff?”
Check jumping for three turns, say “You ain't gettin' any higher.” instead.

 The Inform 7 Programmer's Manual pg 69

It's rare to see a turns amendment directly on an action as we've done with jumping, because
it's rare for a player to type in the same command three times in a row and expect different
results. For X turns make more sense with relations, properties, and conditions because they
have a tendency to hold their value over very long periods of time. By contrast, for X times
makes sense on nearly anything, though when used on actions needs to occur early in
processing so check rules and whatnot don't rob it of its only chance to fire.

The narrative use of these amendments is for varying the narration of repetition. Interactive
fiction differs from video games in that a first success is worth reading about, and the second
only to ensure that you've learned the skill, but after that why tell the reader again. It's old
news. Of course, repetitive failure is not much fun either, but that at least has a narrative role
as struggle. And perhaps a gameplay role too, as puzzle-solving.

5. While minutes and turns both precisely measure time, tense is a relative measure expressed
in English via verb inflections.
A few of these inflections Inform gives a meaning to. The perfect tenses mean “have ever
been true”. So an action in the present-perfect, if we have taken the candle, begins the game
false, becomes true on the first successful TAKE, and never again changes value. Relations,
like if Bob has carried the candle work similarly, but the implementation differs. Each object
has a hidden bit array property holding the answers to if we have queries, so questions of the
form if we have taken the noun work fine. Relations are case-by-case: an implicitly-created
variable BobHasCarriedCandle holds this answer. So actions accept variables like the
noun but no subject – the we are is literal, required, and has no synonyms – while relations
accept a subject like Bob but no variables – BobHasCarriedNoun just won't work right.

if Grognar has carried the Sword of Smiting,
if Bob has ever remembered the time he spent in jail, [present is can remember
– can becomes ever]

The perfect tenses, like stories in general, are about irrevocable developments. While the
condition if Grognar carries the Sword of Smiting is correct when we're checking to see if he
can swing the sword, it isn't correct if an character asks him to describe the sword. Sure, if he
has never encountered the mythical blade he has no first-hand knowledge of it, and if he does
carry it then he certainly can describe it. But if the sword is temporarily separated from him,
asking him under the simple present tense produces a false negative. Grognar has learned
what the blade looks like, and that is as irrevocable as discovering the villain is his own father.
This then is where the perfect tenses come in: knowledge and plot points.

Before moving on, a quick detail about testing the present for the sake of syntax consistency:
when testing whether or not a particular action is currently going on that turn, we are is
accepted in front of the action, but is optional. This mirrors the we have of the present-perfect.

Every turn: if taking something unique, [perfectly synonymous]
Every turn: if we are taking something unique,

6. Relations also support the past and past-perfect tenses. If you've ever implemented a linked
list, you likely know how useful a "previous" node pointer is in addition to the "current" node
pointer, especially for updating those very node linkages. Similarly, when the condition of an

pg 70

if-statement is asked in simple past tense, it queries the previous turn's game state, not the
current one. For example, when phrased in present tense the following lines of code would be
broken: the candle would always be lit afterward regardless its state beforehand. But written
in past tense, the lines indeed toggle the lit property.

if the candle was lit, now the candle is unlit;
if the candle was unlit, now the candle is lit;

(Properties use the verb relation is/was. Again, properties are a special case of relations.)
Remember that by itself the simple past tense only asks a question of the immediately
previous state, not necessarily what changed since the previous turn. So the following
wouldn't do what was intended.

if Bob managed the player, say “So long, Mr. Picky!”

When Bob was the manager on the previous turn, most likely it is because he is the manager
now, too. Try this instead.

if Bob managed the player and Bob does not manage the player, say “So long, Mr.
Picky!”

We recognize change by bracketing it with two world-states, the present one and the previous
turn's (past) one. And should the player again come under the tyranny of Bob, the message
will be re-printed when he yet again leaves Bob. Now we can greet our new manager.

if Joan did not manage the player and Joan manages the player, say “Hello, Joan.”

The past-perfect (if X had been Y or if Bob had managed Dave) relates to the present-perfect
as the simple past relates to the simple present: the past-perfect remembers the previous turn's
present-perfect value. Because the present becomes the past at the end of a turn, during the
update chronological records rule found in the turn sequence rulebook, and because the
perfect tenses do not change once set, the only time throughout the entire game when the past-
perfect isn't equal to its present-perfect twin is during the end of the one turn that changes the
present-perfect.

To continue Joan's example, replacing the past and present with the past-perfect and present-
perfect still recognizes the change via bracketing, except this time the rule will fire at most
once throughout the entire game.

Every turn, if Joan had not managed the player and Joan has managed the player,
say “Pleased to meet you.”

The condition must appear in every turn or as a scene begin/end point because that is the only
time during a turn that past-perfect differs from its present-perfect twin.

Edge cases. For syntactical sugar, these simple things sure have a lot of edge cases. It isn't so
much a case of bad programming as realizing just how much common sense and filtering
happen when people speak naturally.

 The Inform 7 Programmer's Manual pg 71

Negating the Perfect Tenses. We cannot do the following.

Every turn, if Bob had managed the player and Bob has not managed the player, say
“So long forever!”

It's nearly identical to the above example with Joan, except the not moved. Now that rule
never fires. For that rule to fire, the perfect tense would need to transition from false to true,
which perfect tenses don't do, by definition. Had is always what has used to be. So in the
first condition had is saying that has used to be true, while the second condition says that has
is false right now. It's a contradiction.

Even when used alone, negating the perfect tenses can be counterintuitive. Constructions like
if we have not trusted do not mean “if there was a time when we did not trust”, but rather, “if
we have yet to trust”. It is true at the start of the game and becomes permanently false the
first time we trust, as opposed to being false at the start of the game and becoming true the
first time distrusting happens. (For that effect, a distrusting action really is needed, and likely
a relation the twin actions set and unset so it is possible to tell which action happened the
most recently.)

If this isn't clear, I can only recommend circuit timing diagrams. Suffice to say, the perfect
tenses are good for knowledge and plot points, the past tenses are good for recognizing world-
state changes by bracketing, and when put together we can recognize additions to knowledge.

Combining tenses with occurrences. By these rules, it seems rules like if we have taken the
candle twice would never fire, because we have taken, once becoming true, stays true for the
rest of the game. Since it doesn't become false again, it cannot become true again, so twice is
never satisfied. Fortunately this is special-cased to work as it looks like it should.

Every turn when we have eaten the slow-acting poison for 5 turns: say "You start to
feel ill."
Every turn when we have eaten the slow-acting poison for at least 6 turns: say "You
still feel ill."

Check listening to the ominous skritching sound when we have taken the candle at
least three times:

say “Perhaps your life really is tied to this dim, flickering candle.” instead

Initial State. The update chronological records rule is ran just before the when play begins
rules to set up the initial state. Prior to this very early rule, everything is still zero, or possibly
garbage, and the player is in the dark room, “thedark”, so testing the past via any of this
chapter's features may not be a good idea. It is possible to explicitly follow the rule again, or
to list it after the position player in the model world rule to correct snafus, but this has other
effects. For example, throwing off the count in things like for two turns when connected to
the beginning of play.

Timeless Actions. Out of world actions do not affect time, but Inform still counts their
occurrences. So we could do this.

Check saving the game once: say “You have two more chances to save the game.”

pg 72

Check saving the game twice: say “You have one more chance to save the game.”
Check saving the game for at least four times: say “Sorry, you've already used up all
your saves.” instead.
Check quitting the game when we have not requested the score: say "Not curious
about your score?" instead.

But we couldn't do this.

Check saving the game for at least two turns: say “Saving the game multiple times in
a row is a bad idea, because you only have a limited number of saves.” instead.
Check quitting the game for two turns: say “All right, all right, you don't want to play

anymore. Fine.”

This is because if we clue the player that doing something thrice in a row will have negative
consequences, not only will they be certain to try it, but they'll type SAVE just before the third
and final attempt.

Verbs Can Pull Double-duty. It's possible to define the same verb as both action and
relation. The closest to ambiguity that can be reached is the ungrammatical if Bob watching
Junior, which means the same as if Bob is watching Junior, which is clearly a relation.
Without the relation, the former will not even compile. NPC actions in if statements require
trying: if Bob trying watching Junior. Likewise changing the subject to the player, which
will always be a relation test, or we are/have, which will always be an action test. Since the
purpose of almost all actions is to set or unset a relation, using the same verb for both the
relation and the action which sets it reduces our cognitive load.

Sometimes the word trying needs to be inserted even when there is no possibility of
ambiguity, such as in a table column of stored actions.

Past Participial Adjectives versus the Passive Voice. In English, the passive voice swaps
the subject and direct object of the sentence. The preposition by usually precedes the former
subject, assuming it isn't dropped entirely.

Clarissa drew the portrait.
The portrait was drawn by Clarissa.
The portrait was drawn.

The verb phrase changes to the be -en form: is drawn, was drawn, am drawn, are taken, were
driven, etc. But most English verbs don't have an -en (past participial) form, so they use the
-ed (past) form in its place: is painted, was closed, am carried. It is also true that the past
participle -en form can be used as a plain adjective: the drawn portrait, the taken picture, the
closed book. These rules collude to produce a grammatical ambiguity in English.

The door was closed.

That sentence might be in passive voice with a dropped subject, as in the door was closed by
someone, or might be an ordinary assertion in simple past tense, as in the door was not ajar.

Inform supports the passive voice only in one instance: relation verbs declared as to be able

 The Inform 7 Programmer's Manual pg 73

to, such as our can remember example. Passive voice can be stated in the simple present or
past tenses: the time he spent in jail can be remembered by Bob and ...could be remembered
by. Inform's relations do not support passive voice in the perfect tense, nor passive voice
actions, nor any other passive voice combination. Crucially, this one instance of passive voice
that Inform does implement still requires both parameters. We cannot say “if the time he
spent in jail can be remembered”. We need the by someone.

However, Inform does support adjectives, and adjectives can be named for a past participle.
Carried is one such example. Though the standard rule define carry as a relation, it also
defines carried as an adjective via Definition. So both of the following are valid lines of
Inform code, but for entirely different reasons with entirely different meanings.

if the candle is carried, [An adjective test, not a relation test in passive
voice. The player is implied.]

if Clarissa carried a candle, [A relation test (tipoff: two parameters) in simple past
tense.]

An object is carried only if the player carries the object. “A person carried an object” only if
that person was carrying the object on the previous game turn.

Chapter 9.13 of the manual, Writing With Inform, gives this shining example for the simple
past tense.

if the lantern was switched on, now the lantern is switched off;
if the lantern was switched off, now the lantern is switched on;

Like carried's dual definitions, switched on has dual definitions: a device object has an
adjective property switched on/switched off, and the present-perfect tense of the switching on
and switching off actions is we have switched on and we have switched off. But even if we
also created a to be able to switch on relation in addition to the property and the action, there
will still be no ambiguity in Inform. We have always identifies present-perfect actions, two
parameters surrounding a verb identifies relations (even for passive) except for when trying
separates subject and verb (which is an NPC present action), and one parameter identifies the
adjective. A word ending in -ed does not guarantee past tense – it could be the present-
perfect. And verb constructions of the form be -en don't always identify passive voice – it
could be a past participial adjective in simple past.

pg 74

Swapping Headings

As part and parcel of literate programming, Inform provides headings for source code. One of
volume, book, part, chapter, or section against the left margin denote the line as a heading.

Volume 1 - Technical Tidbits

Book 1 - Definitely Necessary Definitions

The IDE puts the heading in bold type, and the heading appears in the contents tab above the
source's pane. (Not to be confused with the contents tab in the index.) The contents shows
our source as an outline, and can even narrow the view to just a particular portion of the
whole code. When used this way, headings are merely a way of organizing our code, and the
index.

Yes, the index, the usefulness of which is easy to overlook. For those of us uncomfortable
with rules, it shows in what order the rules are sorted. For those of us uncomfortable with
abbreviating object names or putting spaces in identifiers, it shows all types of all constructs.
And it shows what constructs we created by typo. Even though variables are grouped with
other variables and phrases with other phrases, each construct, in the index, is grouped under
the most specific heading it follows.

For the extension writer, the index is highly important because the users of your extension
may read the documentation only once, and thereafter read the pithier index to refresh
themselves on the extension's abilities. Careful choice and naming of headings, and careful
arranging of source, create index listings that serve as flash cards. Combined with sensible
synonyms on phrases and functions, an extension's functionality becomes easy to remember,
easy to guess at, and quick to look up.

Inform provides a few features that work on headings and their contents. One is unindexed.
Simply put, most constructs within an unindexed heading don't appear in the index. Rules
will always appear, for instance, but scratchpad variables and utility functions can be hidden.
While Inform has no namespaces to speak of, merely not advertising the existence of such
works well enough, and the extension's complete source is easily seen anyway. Again, Inform
is a white-box language.

Section 8 - odds & ends - unindexed

Second is not for release. Testing and debugging commands are a fact of life, but should a
player discover one it could harm the game or story. So this heading amendment removes
everything in its section: rules, objects, everything. Unlike unindexed, subheadings also fall
under a parent heading's not for release.

Chapter 6 - testing commands - not for release

[any sections within this chapter also remain unreleased]

 The Inform 7 Programmer's Manual pg 75

Headings can also remove, add, or replace source text with the source text of other headings
via the parenthetical amendments for use with, for use without, and in place of. This is
typically done to modify the extensions of others without editing the files, greatly simplifying
administrative tasks such as versioning or “keeping around an extra copy”. These, too, affect
their subheadings. There is a slight restriction on in place of: when replacing a heading, the
replacement must be the same type of heading (chapter, section, whichever).

Chapter 2a - automatic safe cracking (for use with Locksmith by Emily Short)

Chapter 2b - mostly automatic safe cracking (for use without Locksmith by Emily
Short)

Section 6 - hacked locking (in place of Section 1 - Regular locking in Locksmith by
Emily Short)

[this is a section because it is a section being replaced]

A good extension writer will break up an extension into named sections to facilitate heading
replacements. (This is of course somewhat at odds with beautifying the index.) One
extension is automatically included in all projects: the Standard Rules by Graham Nelson. It
contains the most basic information on the class hierarchy, the built-in actions, variables, etc.,
of Inform 7. For example, the properties on class Thing are here.

Section SR1/3 - Things

A thing can be lit or unlit. A thing is usually unlit.
A thing can be edible or inedible. A thing is usually inedible.
A thing can be fixed in place or portable. A thing is usually portable.
A thing can be scenery.
A thing can be wearable.
A thing can be pushable between rooms.

And so on. Though it will likely cause compiler errors in many places, the standard rules can
be modified like any other.

Section 8 - my thing class (in place of Section SR1/3 - Things in the Standard Rules
by Graham Nelson)

Avoiding compiler errors by changing so much of the most basic assumptions of the code
library is difficult, but we're hardly new to compiler errors.

pg 76

Facing Inform 6

All of an Inform 7 project compiles to Inform 6 source code before compiling again to
assembly. This means all of Inform 7's constructs are implemented in Inform 6 somehow.
For example, a rule is a boolean function that takes no passed-in parameters -- action
variables like "the noun" and "the second noun" are global, while local variables are on the
stack -- so a rulebook is an array of function pointers. Larger structures such as actions and
activities are composed of several rulebooks. Object instantiations are connected together by
linked-list pointers, so a set-description may loop through them. Each set-description
compiles to a unique function containing a loop header, and like generator functions in
functional programming, they return the first applicable value that passes muster. (The calling
code, which has the loop body, is responsible for informing the set-description where it left
off so it can find the next applicable value.) Meanwhile, scenes, which can have properties
just like objects, are implemented as several different arrays, one per property. So a scene
name is just a named value, an index into those arrays. And because a single table column's
entries all have the same type, a table column is an array plus a few header bytes, while a
table is an array pointing to those columns. And so on and so forth.

The implementation for all these constructs is found in the template files within the Inform
application. These text files, which have the extension i6t, we can modify from our Inform 7
source similar to section headings. We can replace parts of them, or insert additional bits
between them.

Include (- ... blah blah blah... -) before "Relations.i6t".
Include (- ... blah blah blah... -) instead of "Relations.i6t".
Include (- ... blah blah blah... -) after "Symmetric One To One Relations" in
"Relations.i6t".

Usually we just need to pull out a bit of useful information or add in a useful line in the
generated source. The commonest way is by creating a to-phrase or to-decide function whose
entire body is Inform 6 code between the (- and -) markers. This inserts the exact text into
the compiled Inform 6. So, generally, to-phrases must end in a semicolon, while to-decide
functions, which are frequently if-conditions or r-values, must not.

To decide what number is the chosen table row: (- ct_1 -).
To decide what number is the first misunderstood parser word: (- (wn - 1) -)
To decide which number is (x - a number) ORed with (y - a number): (- ({x} | {y})

-).
To really clear the screen: (- VM_ClearScreen(0); statuswin_cursize = 0; -)

Parameters go between curly braces. There's two parameter types useable here unavailable to
pure Inform 7. Condition is something appropriate to follow an if. Action compiles to an
invocation of TryAction(). Inline assembly may be included amongst the Inform 6 like any
other statement. Assembly opcodes always begin with a @ sign.

To do this: (- do { -). [not ending with a semicolon here, obviously]
To until (C - a condition): (- } until {C}; -).

 The Inform 7 Programmer's Manual pg 77

To push (x - a word value) onto the stack: (- @push {x}; -).
To pull (x - a word value) from the stack: (- @pull {x}; -).

Other Inform7 variables may be accessed by placing the name between (+ and +) markers.
Rules may be invoked by following the markers with empty parenthesis, since rules never
take a parameter. Named to-phrases expand, not to the function, but to an array of metadata
about the function. Index 1 holds the function pointer, so the syntax would resemble ((+ my
I7 phrase +)-->1)(... any parameters ...) while indexes 0 and 2 hold the type and printable
name, respectively.

An extended example: the author wants to save actions for later display or execution from a
hint system or CYOA menu. One goal is as always a nice Inform 7 syntax, preferably without
using the action of keywords that herald a stored action. So he reaches for the action
parameter type, which requires an Inform 6 inclusion, then reflects the Inform 6 right back
into an Inform 7 to-phrase, which has all five parameters of the TryAction() invocation, plus
two new parameters: a description of people, and whichever rule is currently held in his extra
behavior variable.

The first line here shows the resulting syntax within a Before rule.
Before an actor opening something locked, a strong person in the location could try
attacking the noun.

The extra behavior is a rule that varies.

To (P - a description of people) could try (invocation - action):
(- Could{invocation}{-backspace}{-backspace}, {P}, (+ extra behavior +));
-).

Include (-
[CouldTryAction req actr act n sn desc exbehvr;

((+ remembering for later +)-->1)(req, actr, act, n, sn, desc, exbehvr);
];
-).

To (requested - truth state) intention by (dont-use-this - a person) considering
(possible-action - an action name) via (possible-noun - an object) & (possible-second-
noun - an object) by any able-bodied (faction - a description of people) with (behavior
- a rule) (this is remembering for later):

[.. and so on ...]

After Inform 7 expands the parameter {invocation} to TryAction(v,w,x,y,z); the pair of {-
backspace} macros erase the semicolon and closing parenthesis so additional parameters
could be added. Furthermore, we simply prepend the word "Could" in front of the function
name to form a different function name altogether, CouldTryAction(), which we instructed to
call the complicated to-phrase.

The last use of the (- and -) markers is to create a compile-time assertion, which Inform 7 calls
"use options". To use the following we'd just assert it like any other use option: Use the

pg 78

American dialect, RULES ALL at start, and no scoring.

Use RULES ALL at start translates as (- Global debug_rules=2; -).

The line will be included if the source includes the use option, otherwise not.

The other way of tinkering with Inform 6 is to expose a pre-existing variable, function, etc. by
naming it with an Inform 7 name. Unlike the methods above, this allows us to assign to
variables directly.

Out-of-world is a truth state that varies.
The out-of-world variable translates to I6 as "meta".

The currently-executing action is an action name that varies.
The currently-executing action variable translates into I6 as "action".

Properties, rules, understand tokens, Definition: adjectives, instantiations, and classes may be
translated similarly. Translating is necessary because the generated I6 names differ from their
I7 counterparts to prevent any unfortunate name clashes. But because I6 implements much of
I7, tinkering requires communication between the layers. One example is new tokens for use
in understand assertions, which inform the parser, written solely in Inform 6.

The understand token subordinating conjunction translates into I6 as
"SUB_CONJ_TOKEN".

Include (-
[SUB_CONJ_TOKEN;

return ((+ parsing the sub conj +)-->1)();
];
-).

To decide which number is parse succeeds: (- GPR_PREPOSITION -).
To decide which number is parse fails: (- GPR_FAIL -).

To decide which number is parse the sub conj (this is parsing the sub conj):
repeat through the table of subordinating conjunctions:

if the unmatched word matches the topic entry:
now the sub conj is the output entry;
decide on parse succeeds;

decide on parse fails.

We can declare global I6 variables from Inform 7, and not expose them to Inform 7 if we
wish.

Include (-
Global save_debug_rules;
-).

When Inform 7 is creating Inform 6 code, it recognizes a few macros beside just {-
backspace}. Although innocuous enough, these facilities open up whole new categories of

 The Inform 7 Programmer's Manual pg 79

things phrases can do. Counters are the first. Each time a phrase uses {-advance-
counter:FOOBAR}, the current value of the number variable FOOBAR replaces it as a
constant literal, and FOOBAR is then post-incremented. The variable is inside the Inform 7
compiler, not in our source code (either I7 or I6). One example of its use is debugging. Let's
say we have a complicated I6 inclusion that crashes with a runtime error, but only sometimes.
We use the phrase in three different places in our code, and know not which is causing the
problem. We could define it like so.

To do complicated thing:
(- print "invocation #", {-advance-counter:BigThing}, "^";

! blah blah blah
 -).

When play begins, do complicated thing.
Every turn, do complicated thing.

Each place that "do complicated thing" appears in the source has its own number, starting
from zero. We can also put the macro next to a variable name, like myvar{-advance-
counter:MyVarCount}, so the resulting Inform 6 code references variables myvar0, myvar1,
etc.

Related are {-zero-counter:FOOBAR} which sets the counter back to zero, and {-
counter:FOOBAR} which becomes the number without increasing the number afterward. Just
to be clear, {-advance-counter:FOOBAR} post-increments, and in case that causes a problem,
it can be placed in an Inform 6 comment, where its expansion is ignored.

Finally in this series on counters is {-allocate-storage:FOOBAR}. The above counters only
existed in our resulting Inform 6 source as constants, but this instruction creates actual storage
space in our Inform 6 source, an array called I7_ST_FOOBAR, which has at least the number
of elements as the FOOBAR counter. The counter is how each I7 phrase invocation knows
which array element belongs to it, so I7_ST_FOOBAR-->{-advance-counter:FOOBAR}
appears in our definition precisely once. Should we need to reference storage multiple times
in the same definition, it appears last (because it post-increments) and one or more
I7_ST_FOOBAR-->{-counter:FOOBAR} appear. For example, if our phrase defines a new
kind of loop, and we want the loops to be able to nest, this construction solves our problem.

To repeat with (R - nonexisting rule variable) running through future events begin --
end:
(-
{-allocate-storage:LoopingThruEvents} ! expands to nothing, and no further effect for
multiple appearances
for (I7_ST_LoopingThruEvents-->{-counter:LoopingThruEvents} = 1
 : I7_ST_LoopingThruEvents-->{-counter:LoopingThruEvents} <=
TimedEventsTable-->0
 : (I7_ST_LoopingThruEvents-->{-counter:LoopingThruEvents})++)
if (({R} = TimedEventsTable-->(I7_ST_LoopingThruEvents-->{-advance-
counter:LoopingThruEvents})) ~= 0)
-). [that's an assignment inside the condition]

pg 80

And finally, almost as an afterthought: occasionally we write phrases for tables. Tables
require some local variables, such as ct_1. The macro {-require-ctvs} tells Inform to create
said variables.

This is only most of Inform 7. It is a large language with many nooks and crannies to explore.
Finding them is frequently a game in itself. I hope you find it as enjoyable as I have.

READY.
> _

 The Inform 7 Programmer's Manual pg 81

	Inform 7: In a Nutshell
	The Firehose
	Class And Prejudice
	The Coding Imperative
	Boolean Adjectives
	Patterned Procedures
	Functions Decide on a Value
	Say Phrases
	Types of Types
	Sweet Relations
	Rules of Thumb
	Rulebooks: White-box Paradigm
	Events are Actions
	Understanding Our Player, Our Parser
	Arrays Have Been Tabled
	Time for a Scene
	Named Values Everywhere
	It's Not Just Text
	Precisely One Spoon-unit Of Sugar
	Backstage Activities
	Testing Commands
	Times, Turns, and Tenses
	Swapping Headings
	Facing Inform 6

